scholarly journals Invariant analytical solutions for the motion of an elastic string with electric current in a static magnetic field

Author(s):  
Evgeny Kurmyshev ◽  
Luis M. Piñuelas Castro ◽  
Alexander Yakhno ◽  
Liliya Yakhno

2020 ◽  
Author(s):  
Evgeny Kurmyshev ◽  
Luis Manuel Pi uelas Castro ◽  
Alexander Yakhno ◽  
Liliya Yakhno


Author(s):  
Marcin Ziolkowski ◽  
Stanislaw Gratkowski

Purpose – In many different engineering fields often there is a need to protect regions from electromagnetic interference. According to static and low-frequency magnetic fields the common strategy bases on using a shield made of conductive or ferromagnetic material. Another screening technique uses solenoids that generate an opposite magnetic field to the external one. The purpose of this paper is to discuss the shielding effect for a magnetic and conducting cylindrical screen rotating in an external static magnetic field. Design/methodology/approach – The magnetic flux density is expressed in terms of the magnetic vector potential. Applying the separation of variables method analytical solutions are obtained for an infinitely long magnetic conducting cylindrical screen rotating in a uniform static transverse magnetic field. Findings – Analytical formulas of the shielding factor for a cylindrical screen of arbitrary conductivity and magnetic permeability are given. A magnetic Reynolds number is found to be an appropriate indication of the change in magnetic field inside the screen. Useful simplified expressions are presented. Originality/value – This paper treats in a qualitative way the possibility of static magnetic field shielding by using rotating conducting magnetic cylindrical screens. Analytical solutions are given. If the angular velocity is equal to zero or the relative permeability of the shield is equal to one the shielding factor has forms well known from literature.



1967 ◽  
Vol 45 (5) ◽  
pp. 1675-1691
Author(s):  
A. D. Wunsch

The radiation resistance of a strip of electric current immersed in a cold magnetoplasma is investigated. The current is assumed to flow in a direction perpendicular to the static magnetic field. Integral expressions are obtained for the radiation resistance of a Hertzian dipole and for a current strip of finite width and length. Numerical results covering a wide range of frequencies are presented for both of the sources. It is shown that there are two frequency ranges where the radiation resistance of the Hertzian dipole is infinite, while the radiation resistance of the strip is finite everywhere except at the upper hybrid resonance frequency. The way in which the length of the strip influences its radiation resistance is discussed.



2004 ◽  
Vol 91 (1) ◽  
pp. 59-65 ◽  
Author(s):  
S Sipka ◽  
I Szöllősi ◽  
Gy Batta ◽  
Gy Szegedi ◽  
Á Illés ◽  
...  


1984 ◽  
Vol 3 (1) ◽  
pp. 223-234
Author(s):  
Frank Papatheofanis ◽  
Bill Fapatheofanls ◽  
Robert Ray


Author(s):  
B. A. Katsnelson ◽  
M. P. Sutunkova ◽  
N. A. Tsepilov ◽  
V. G. Panov ◽  
A. N. Varaksin ◽  
...  

Sodium fluoride solution was injected i.p. to three groups of rats at a dose equivalent to 0.1 LD50 three times a week up to 18 injections. Two out of these groups and two out of three groups were sham-injected with normal saline and were exposed to the whole body impact of a 25 mT static magnetic field (SMF) for 2 or 4 hr a day, 5 times a week. Following the exposure, various functional and biochemical indices were evaluated along with histological examination and morphometric measurements of the femur in the differently exposed and control rats. The mathematical analysis of the combined effects of the SMF and fluoride based on the a response surface model demonstrated that, in full correspondence with what we had previously found for the combined toxicity of different chemicals, the combined adverse action of a chemical plus a physical agent was characterized by a tipological diversity depending not only on particular effects these types were assessed for but on the dose and effect levels as well. From this point of view, the indices for which at least one statistically significant effect was observed could be classified as identifying (I) mainly single-factor action; (II) additive unidirectional action; (III) synergism (superadditive unidirectional action); (IV) antagonism, including both subadditive unidirectional action and all variants of contradirectional action.



Sign in / Sign up

Export Citation Format

Share Document