Design of printed monopole antenna with band notch characteristics for ultra‐wideband applications

Author(s):  
Narinder Sharma ◽  
Sumeet S. Bhatia
2007 ◽  
Vol 49 (6) ◽  
pp. 1435-1438 ◽  
Author(s):  
Yi-Chieh Lee ◽  
Jwo-Shiun Sun ◽  
Wei-Jiun Huang

2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


Author(s):  
Muhammad Irfan Khattak ◽  
Muhammad Irshad Khan ◽  
Zaka Ullah ◽  
Gulzar Ahmad ◽  
Amad Khan

Inherently UWB (Ultra Wideband) communication systems comes with interference problem with some if the existing narrowband communication systems. These bands are stopped with the help of band-stop filter in order to reduce electromagnetic interference However, the complexity and limitations are increased due to these filters, hence this solution is turned down in those applications where design complications and complexity is of concern. Introducing various slots of specific shapes and exact dimensions however, have solved this issue for the researchers around the world. This paper presents a hexagonal PMA (Printed Monopole Antenna) with triple stop bands. The antenna is used for UWB application. The antenna is stopped the WiMAX (Worldwide Interoperability for Microwave Access), WLAN (Wireless Local Area Network) and ITU (International Telecommunication Union) bands. The antenna dimensions are 30x28x16 mm3. FR4 is used between ground and radiating patch with relative permittivity of 4.4. The VSWR (Voltage Standing Wave Ratio) is less than 2 between 3-11 GHz except WiMAX (3.1-3.7 GHz), WLAN (5.1-5.8 GHz) and the ITU frequency band (7.95-8.4 GHz). The antenna is design in CST software.


Sign in / Sign up

Export Citation Format

Share Document