high band
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 52)

H-INDEX

22
(FIVE YEARS 7)

2021 ◽  
Vol 5 (12) ◽  
pp. 279
Author(s):  
Tilemachos M. Athanasiadis ◽  
Nataliya K. Porayko ◽  
John Antoniadis ◽  
David Champion ◽  
Olaf Wucknitz ◽  
...  

Abstract 2MASS J050051.85−093054.9 is the closest known low-mass helium-core white dwarf in a binary system. We used three high-band international Low-Frequency Array stations to perform a targeted search for a pulsar companion, reaching sensitivities of ∼3 mJy for a 10 ms pulsar at a DM = 1 pc cm−3. No pulsed signal was detected, confidently excluding the presence of a detectable radio pulsar in the system.


2021 ◽  
Vol 16 (2) ◽  
pp. 52-67
Author(s):  
Euis Uswatun Hasanah ◽  
Indar Kustiningsih ◽  
Slamet Slamet ◽  
Maughal Ahmed Ali Baig

Synthetic dyes waste from textile industries, produce of the problematic pollutants in wastewater. TiO2 based photocatalysis are materials that exhibit excellent absorption behavior for organic compounds in wastewater due it properties including nontoxicity, high photocatalysis degradation ability, and chemical stabilities. However, several challenges exist regarding TiO2 nanotubes pure applications for dyes degradation such as poor affinity, high band gap energy, and difficulty of recovery and easy to recombination so it would decrease effectiveness of the photocatalysis process. Therefore, more design and optimization testing need to be conducted on the treatment conditions in order to reach higher removal efficiencies with lower costs. The modified physical properties by adding metal dopant, nonmetal, and sensitizer significantly enhanced photocatalysis activity. These parameters, which affect photocatalysis activity on degrade dyes waste pollutants, are discussed in the current review. As a result, the photocatalysis becomes more expected, and encourages to further research development.  Keywords: TiO2, nanotubes, degradation, synthetic, dyes


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6841
Author(s):  
Nicole Bartek ◽  
Vladimir V. Shvartsman ◽  
Houssny Bouyanfif ◽  
Alexander Schmitz ◽  
Gerd Bacher ◽  
...  

Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead‑based ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.


Author(s):  
Mahsa Zabetiakmal ◽  
Gholamreza Moradi ◽  
Ayaz Ghorbani

Abstract In this paper, a dual-band 8 × 8 multi-input multi-output (MIMO) array antenna operating in 3.5 GHz band (3400–3600 MHz) and 5.5 GHz band (5150–5925 MHz) for 5G mobile handset is presented. The proposed hybrid antenna includes a comb-shaped monopole and an L-shaped open slot antenna which are symmetrically located on the inner surface of the side-edge frame of smartphone. Pattern diversity is achieved that can mitigate envelope correlation coefficients (ECCs) and improve the MIMO system performances. The prototype of proposed dual-band eight-element MIMO antenna is fabricated and experimentally measured. The results show that isolation <−10 and <−15 dB, respectively in the lower band and high band without any additional decoupling element are achieved and the desired bands are satisfied under the condition of −6 dB impedance matching. Moreover, the essential parameters for evaluation of the MIMO system performance such as the ECC, mean effective gain (MEG), and ergodic channel capacity are calculated. Furthermore, the influence of user's hand on the radiation characteristics of proposed MIMO antenna are also investigated and discussed. Based on the result, the proposed MIMO antenna is a good candidate for use in future 5G applications.


Author(s):  
Mats-Olof Mattsson ◽  
Myrtill Simkó ◽  
Kenneth R. Foster

The development and establishment of mobile communication technologies has necessitated assessments of possible risks to human health from exposures to radio-frequency electromagnetic fields (RF EMF). A number of expert committees have concluded that there is no evidence for such risks as long as exposures are at or below levels that do not allow tissue heating. These assessments have been based primarily on studies investigating frequencies up to 6 GHz including frequencies similar to those used by two of three major bands of fifth generation (more accurately 5G New Radio or 5G NR) of mobile communication. Bioeffects studies in so-called high-band at 25–39 GHz are particularly sparse. Future assessments relevant for these frequencies will need to rely on still unperformed studies. Due to few available studies at 5G NR “high band” frequencies, and questions raised by some existing studies, a recent review recommended a wide range of RF biostudies be done at 5G NR “high band” frequencies. It is of importance that such studies be done using the best possible science. Here we suggest factors to consider when performing future studies in this area. The present focus is on laboratory studies to clarify biological effects of radiofrequency (RF) energy at 5G “high band” frequencies and, more generally at millimeter wave (mm-wave) frequencies (30-300 GHz) which will be increasingly used by communications technologies in the future. Similar comments would apply to epidemiology and exposure assessment studies, but those are not the focus of the present Perspective.


Author(s):  
Kenneth R Foster ◽  
Vijayalaxmi

One major source of controversy related to possible health effects of radiofrequency radiation (RFR) is the large number of reported statistically significant effects of exposure, over the entire RF part of the spectrum and over a wide range of exposure levels, even as health agencies do not find clear evidence for health hazards of exposure at levels within current IEEE and ICNIRP exposure limits. This Perspective considers 31 studies related to genetic damage produced by exposure to RFR at frequencies above 6 GHz, including at millimeter-wave (mm-wave) frequencies. Collectively, the papers report many statistically significant effects related to genetic damage, many at exposure levels below current exposure limits. However, application of five risk of bias (RoB) criteria and other considerations suggest that the studies in many cases are vulnerable to false discovery (nonreplicable results). The authors call for improvements in study design, analysis and reporting in future bioeffects research to provide more reliable information for health agencies and regulatory decision makers. This Perspective is a companion to another Perspective by Mattsson et al. elsewhere in this volume (Mattsson et al., 2021)1.


Author(s):  
Mantas Sakalas ◽  
Niko Joram ◽  
Frank Ellinger

Abstract This study presents an ultra-wideband receiver front-end, designed for a reconfigurable frequency modulated continuous wave radar in a 130 nm SiGe BiCMOS technology. A variety of innovative circuit components and design techniques were employed to achieve the ultra-wide bandwidth, low noise figure (NF), good linearity, and circuit ruggedness to high input power levels. The designed front-end is capable of achieving 1.5–40 GHz bandwidth, 30 dB conversion gain, a double sideband NF of 6–10.7 dB, input return loss better than 7.5 dB and an input referred 1 dB compression point of −23 dBm. The front-end withstands continuous wave power levels of at least 25 and 20 dBm at low band and high band inputs respectively. At 3 V supply voltage, the DC power consumption amounts to 302 mW when the low band is active and 352 mW for the high band case, whereas the total IC size is $3.08\, {\rm nm{^2}}$ .


Sign in / Sign up

Export Citation Format

Share Document