Printed dual-feed triangular patch antenna disposed in a small notch in the handheld device system ground plane for LTE/WWAN operation

2013 ◽  
Vol 55 (11) ◽  
pp. 2767-2773 ◽  
Author(s):  
Yi-Ting Hsieh ◽  
Kin-Lu Wong ◽  
Yung-Tao Liu ◽  
Hong-Twu Chen

Author(s):  
Muhammad Khalid ◽  
Kamran Raza

This paper presents novel reduced size diagonal slot embedded Triangular Gasket fractal patch antenna for multiband wireless applications. The diagonal slot geometry is embedded in triangular patch antenna for initial size reduction of the basic cell and further miniaturization is achieved by fractalization of the cell upto third order. Three frequency resonances of 2.4, 6.5 and 9.23 GHz are optimized for WiFi, WiMAX and WLAN (Wireless Local Area Network) applications in the S, C and X frequency bands. Size reduction upto 55.32 and 80.74% is achieved in terms of whole antenna area and copper cladding remaining respectively in comparison to triangular patch antenna. Antenna 3D (Three-Dimensional) modeling, simulation and optimization for the desired BW (Bandwidth) and gain requirements are done in HFSS (High Frequency Structure Simulator) and CST (Computer Simulation Technology). Effects of embedding diagonal slot in the basic triangular cell is analyzed in terms of the diagonal slot length and width with corresponding frequency response variations. Microstrip feed line dimensions and ground plane separation from the radiating top layer is optimized for achieving acceptable BWs less than -10 dB for the desired multiple resonances. E-field, H-field, current density and surface current plots are presented to verify the radiations for multiband wireless applications. Proposed slot embedded fractal radiator is fabricated and measured frequency responses and gain patterns are demonstrated in comparison with simulated results for verification of the concept.





Author(s):  
Apratim Chatterjee ◽  
Dweepayan Sen Sharma ◽  
Diptiranjan Samantaray ◽  
Chittajit Sarkar ◽  
Chinmoy Saha ◽  
...  


2007 ◽  
Vol 43 (3) ◽  
pp. 140 ◽  
Author(s):  
L. Liu ◽  
S. Zhu ◽  
R. Langley


2017 ◽  
Vol 49 (004) ◽  
pp. 767--772
Author(s):  
G. AHMAD ◽  
M. I. BABAR ◽  
M. IRFAN ◽  
M. ASHRAF ◽  
T. JAN


Author(s):  
Ashish Kumar ◽  
Amar Partap Singh Pharwaha

Background: Patch antennas are composed of the substrate material with patch and ground plane on the both sides of the substrate. The dimensions and performance characteristics of the antenna are highly influenced by the choice of the appropriate substrate depending upon the value of their dielectric constant. Generally, low index substrate materials are used to design the patch antenna but there are also some of the applications, which require the implementation of patch antenna design on high index substrate like silicon and gallium arsenide. Objective: The objective of this article is to review the design of antennas developed on high index substrate and the problems associated with the use of these materials as substrate. Also, main challenges and solutions have been discussed to improve the performance characteristics while using the high index substrates. Method: The review article has divided into various sections including the solution of the problems associated with the high index substrates in the form of micro-machining process. Along with this, types of micro machining and their applications have discussed in detail. Results: This review article investigates the various patch antennas designed with micro-machining technology and also discusses the impact of micro-machining process on the performance parameters of the patch antennas designed on high index substrates. Conclusion: By using the micro-machining process, the performance of patch antenna improves drastically but fabrication and tolerances at such minute structures is very tedious task for the antenna designers.



Sign in / Sign up

Export Citation Format

Share Document