Doherty power amplifier with enhanced in-band load modulation for 100 MHz LTE-advanced application

2014 ◽  
Vol 57 (2) ◽  
pp. 391-395 ◽  
Author(s):  
Jing Xia ◽  
Xiaowei Zhu
Author(s):  
Seyedehmarzieh Rouhani ◽  
Kasra Rouhi ◽  
Adib Abrishamifar ◽  
Majid Tayarani

This paper presents an approach to power added efficiency (PAE) increase for Quasi-Doherty power amplifier (Q-DPA) design. For this aim, active feedback is utilized instead of a passive quarter wavelength transmission line (TL) usage, which is conventionally used in the DPA schematic. PAE increase can be done by applying an accurate load modulation to the main amplifier (PAmain), especially for technologies in which output impedance of the main power amplifier (Zout,main) considerably varies in both low and high power regions. Because such precise modulation is still based on a modified TL, this approach suffers from the inherent narrowband behavior of that TL. As a consequence, expecting a wideband DPA may not be satisfied in all cases. To deal with this issue, active feedback is used to play a role in reaching PAmain, which is not saturated before, to its maximum efficiency at the highest level of received input power (Pin) in the high power region. Following Zout,main trajectories in power and frequency sweeps simultaneously just by a passive TL are not needed anymore. Still, for the sake of preventing total PAE degradation due to the consummated power by the feedback path’s power amplifier (PAfeedback) should be limited, analytical confinement is provided in this work. A comparison is made between GaAs pHEMT 0.25um MMIC technology-based conventional DPA and the proposed revised approach based-DPA to verify the mentioned approach. The proposed PA shows maximum output power of 33.4 dBm, maximum PAE of 41.6, fractional bandwidth of 11%. The Q-DPA works with a maximum power gain of 24.16.


2013 ◽  
Vol 760-762 ◽  
pp. 546-550 ◽  
Author(s):  
Wen Sheng Pan ◽  
Chuan Hui Ma ◽  
Shi Hai Shao ◽  
You Xi Tang

An unsymmetrical GaN based Doherty power amplifier (DPA) operating from 2.5GHz to 2.7GHz is presented in this paper. To achieve a good tradeoff among the output power, efficiency and bandwidth, the ladder-type multisection output matching networks are optimized for the carrier amplifier and the peaking amplifier, respectively. Measured with continuous wave (CW) signal, the broadband DPA provides more than 49dBm saturation power in the operating band. The drain efficiency is greater than 44% over 7dB back-off power. For a LTE-Advanced signal with 100MHz bandwidth, the drain efficiency is higher than 42% at an average output power of 41dBm, along with an adjacent channel leakage ratio (ACLR) of better than-49.9dBc after digital predistortion (DPD).


Sign in / Sign up

Export Citation Format

Share Document