Design of compact slot antenna based on split ring resonator for 2.45/5 GHz WLAN applications with circular polarization

2015 ◽  
Vol 58 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Azadeh Pirooj ◽  
Mohammad Naser-Moghadasi ◽  
Ferdows B. Zarrabi
2020 ◽  
Vol 9 (1) ◽  
pp. 41-48
Author(s):  
P. M. Paul ◽  
K. Kandasamy ◽  
M. S. Sharawi

A compact multiband circularly polarized slot antenna is proposed here. An F-shaped microstrip feedline is used to excite the square slot antenna loaded with a U-shaped strip and a split ring resonator (SRR) to generate three circularly polarized bands at 1.5 GHz, 2.75 GHz and 3.16 GHz. A meandered slot is used in the feedline and the U-strip to improve the axial ratio bandwidth (ARBW). The meandered feedline excites the slot to produce resonance at 2.5 GHz. This resonance along with that of the F-shaped feed, loaded SRR and U-strip combine to give rise to three circularly polarized bands which can be tuned depending on the feed, SRR and U-strip dimensions. The orientation of the F-shaped feed decides the sense of polarization of the three circularly polarized bands of the proposed antenna. The proposed antenna is fabricated on a substrate of FR4 material with dimensions 50 x 50 x 1.56 mm3. The antenna is prototyped and measured in terms of impedance bandwidth, ARBW, gain and efficiency. The simulated and measured results show reasonably good agreement.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shima Poorgholam-Khanjari ◽  
Ahmad Hatami ◽  
Ferdows B. Zarrabi

Abstract Microwave sensing is important to measure the permittivity of the materials or detecting a material. In this current work, a compact antenna for WLAN application with circular polarization is designed. We are supposed to use it as a sensor to determine the permittivity of industrial oil. For calibration of the sensor, the gasoline and petrol are utilized based on Debye theory and also butanol is checked. This antenna is designed based on Microstrip slot antenna with bent feed line and special split-ring resonator (SRR) as a metamaterial (MTM) element for 4 GHz, it is shown that metamaterial can be considered for improving the Q-factor and matching where the return loss is reduced from −16.5 to −33.5 dB and the Q-factor is increased from 2.39 to 32.9. It covers 4–5 GHz with the bidirectional pattern with gain of 4 dBi which makes it useful for putting inside of liquids. The total dimensions of this resonator are 20 × 20 × 1.6 mm and the FR-4 low-cost substrate is used and the experimental results are confirmed the simulations results by HFSS commercial full-wave software. In fact, this method can be used for fast detecting oil condition and longevity by checking the resonances’ shift and permittivity.


2017 ◽  
Vol 65 (9) ◽  
pp. 4664-4675 ◽  
Author(s):  
Wenxing Tang ◽  
George Goussetis ◽  
Nelson J. G. Fonseca ◽  
Herve Legay ◽  
Elena Saenz ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tahir Ejaz ◽  
Hamood Ur Rahman ◽  
T. Tauqeer ◽  
Adnan Masood ◽  
Tahir Zaidi

Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.


Sign in / Sign up

Export Citation Format

Share Document