Wideband quasi‐Yagi antenna with stable radiation patterns for base‐station applications

Author(s):  
Duo‐Long Wu ◽  
Kang Yu Yang ◽  
Wen Jian Zhu ◽  
Jian‐Feng Li ◽  
Liang Hua Ye
2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 986 ◽  
Author(s):  
Sining Liu ◽  
Raad Raad ◽  
Panagiotis Ioannis Theoharis ◽  
Faisel Em Tubbal

In this paper, a printed Yagi antenna with an integrated balun is proposed for CubeSat communications. The printed antenna is mechanically adjustable to realize three functional states at different operating frequencies in the L-band and S-band respectively. Three different angle deployments are proposed at 10°, 50° and 90°, so that the antenna operates at three different operating frequencies, namely 1.3 GHz (L-band), 2.4 GHz (S-band) and 3 GHz (S-band). The measured results of the fabricated antenna are well matched with the simulation, having frequencies of 2.82–3.07 GHz, 1.3–1.4 GHz and 2.38–2.57 GHz, with similar radiation patterns. The measured gain of the antenna is 8.167 dBi at 2.4 GHz, 5.278 dBi at 1.3 GHz and 6.120 dBi at 3 GHz. Keeping within the general theme of cheap off the shelf components for CubeSats, this antenna design allows the CubeSat designers to choose from three popular frequencies, through a simple angle configuration. The main contribution of this work lies with the reconfigurable frequency, relatively high gain and simplicity of design.


1975 ◽  
Vol 11 (22) ◽  
pp. 550
Author(s):  
P.S. Hall ◽  
B. Chambers ◽  
P.A. Mcinnes

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Botao Feng ◽  
Shufang Li ◽  
Wenxing An ◽  
Weijun Hong ◽  
Sixing Yin

A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layerη-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz) with a stable gain of7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz) with a gain of9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.


Sign in / Sign up

Export Citation Format

Share Document