Technical Note: A proposal of air ventilation system design criteria for a clinical room in a heavy-ion medical facility

2018 ◽  
Vol 45 (6) ◽  
pp. 2667-2671 ◽  
Author(s):  
Oyeon Kum
2016 ◽  
Vol 96 ◽  
pp. 285-293 ◽  
Author(s):  
Jurgis Zemitis ◽  
Anatolijs Borodinecs ◽  
Aleksandrs Geikins ◽  
Targo Kalamees ◽  
Kalle Kuusk

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3798 ◽  
Author(s):  
Sara Zanni ◽  
Francesco Lalli ◽  
Eleonora Foschi ◽  
Alessandra Bonoli ◽  
Luca Mantecchini

Indoor air quality (IAQ) management in public spaces is assuming a remarkable importance. Busy environments, like airport terminals, are currently regarded as possible hotspots and IAQ is a crucial element for passengers and staff protection, as well as a key aspect of airport passenger experience. A one-month monitoring period has been performed on IAQ in the airport of Bologna (Italy), as prototypal example of large regional airport. Four strategic areas within the airport have been equipped with electronic monitoring platforms, including different contaminants and two microclimatic sensors. Data suggest that daily variation in IAQ parameters typically follow the activity pattern of the different environments under study (i.e., passengers’ flows) for gaseous contaminants, where particulate matter counts oscillate in a definite range, with a significant role played by ventilation system. Gaseous contaminants show a correlation between indoor and outdoor concentrations, mainly due to airside activities. Micro-climatic comfort parameters have been tested to match with standards for commercial environments. As results appears in line with typical households IAQ values, the current air ventilation system appears to be adequate. Nevertheless, an integrated air management system, based on real-time monitoring, would lead to optimization and improvement in environmental and economical sustainability.


2011 ◽  
Vol 6 (1) ◽  
pp. 114-122
Author(s):  
Zohreh Razavi ◽  
Max Richter ◽  
Murray Hodgson ◽  
Alireza Khaleghi

Low speech privacy in shared and private offices in one of the early generation of a “green” building resulted in occupants' dissatisfaction. This problem is experienced in Liu institute with a natural-ventilation system. Such a system requires low air-flow resistance which is achieved by large openings which will result in noise transmission between various spaces within the building. The poor acoustical quality in this building resulted in occupants' noise complaints which were further investigated by way of relevant acoustical measurements. CATT-Acoustic software was utilized to modify the acoustical quality of the building without any disturbance to the occupants. The optimized design of the transfer box above the office door was selected based on CATT-Acoustic predictions. The acoustical measurements were conducted after installation of the transfer box above the office door. The measurements' results agreed with the predictions which led to improved speech privacy to an acceptable level between the office and the corridor in Liu Institute. More work should be done to improve the acoustical quality of natural-ventilated building to conform to ANSI standards.1The results of this study strongly support including acoustics in “green” building designs with natural ventilation to avoid users' complaints.


2020 ◽  
Vol 172 ◽  
pp. 09004
Author(s):  
Xinxiu Tian ◽  
Jamie Fine ◽  
Marianne Touchie

In many existing high-rise multi-family buildings, a pressurized corridor ventilation system is used to meet outdoor air ventilation requirements. However, this system often has poor performance, leading to under- or over- ventilation in different parts of a building. This study examines three ventilation strategies including: the base case, which is a traditional pressurized corridor ventilation system, a direct-to-suite ducted ventilation system, and a suite-based HRV ventilation system. A building model was constructed in CONTAM using features of a typical post-war multi-family building in Toronto, Canada. All three strategies were simulated using CONTAM under both summer and winter conditions. The resulting outdoor airflow delivery rates to the suites and corridor pressure differentials were compared to assess the effectiveness of each strategy. The results show that the suite-based HRV strategy is able to provide adequate ventilation airflow to individual suites in both summer and winter. In the traditional pressurized corridor system and the direct-to-suite ducting system, the airflows delivered to the suites located at the top of the building are higher than those delivered to the suites located at the bottom of the building. This uneven airflow distribution is more pronounced in winter when stack effect impacts the ventilation system more significantly.


2004 ◽  
Vol 2004 (14) ◽  
pp. 433-447
Author(s):  
Donald E. Maurer ◽  
Colin D. Groff ◽  
Brian M. Karmasin ◽  
Greg L. Perrine ◽  
Scott D. Kelly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document