scholarly journals Indoor Air Quality Real-Time Monitoring in Airport Terminal Areas: An Opportunity for Sustainable Management of Micro-Climatic Parameters

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3798 ◽  
Author(s):  
Sara Zanni ◽  
Francesco Lalli ◽  
Eleonora Foschi ◽  
Alessandra Bonoli ◽  
Luca Mantecchini

Indoor air quality (IAQ) management in public spaces is assuming a remarkable importance. Busy environments, like airport terminals, are currently regarded as possible hotspots and IAQ is a crucial element for passengers and staff protection, as well as a key aspect of airport passenger experience. A one-month monitoring period has been performed on IAQ in the airport of Bologna (Italy), as prototypal example of large regional airport. Four strategic areas within the airport have been equipped with electronic monitoring platforms, including different contaminants and two microclimatic sensors. Data suggest that daily variation in IAQ parameters typically follow the activity pattern of the different environments under study (i.e., passengers’ flows) for gaseous contaminants, where particulate matter counts oscillate in a definite range, with a significant role played by ventilation system. Gaseous contaminants show a correlation between indoor and outdoor concentrations, mainly due to airside activities. Micro-climatic comfort parameters have been tested to match with standards for commercial environments. As results appears in line with typical households IAQ values, the current air ventilation system appears to be adequate. Nevertheless, an integrated air management system, based on real-time monitoring, would lead to optimization and improvement in environmental and economical sustainability.


2015 ◽  
Vol 06 (08) ◽  
pp. 851-856 ◽  
Author(s):  
Like Shi ◽  
Yue Wang ◽  
Liang Xu ◽  
Yan Liu ◽  
Dongsheng Yao ◽  
...  


Author(s):  
Shaharil Mad Saad ◽  
Ali Yeon Md Shakaff ◽  
Abdul Rahman Mohd Saad ◽  
Azman Muhamad Yusof Kamarudin


2019 ◽  
Vol 11 (20) ◽  
pp. 5777 ◽  
Author(s):  
Giacomo Chiesa ◽  
Silvia Cesari ◽  
Miguel Garcia ◽  
Mohammad Issa ◽  
Shuyang Li

Indoor Air Quality (IAQ) issues have a direct impact on the health and comfort of building occupants. In this paper, an experimental low-cost system has been developed to address IAQ issues by using a distributed internet of things platform to control and monitor the indoor environment in building spaces while adopting a data-driven approach. The system is based on several real-time sensor data to model the indoor air quality and accurately control the ventilation system through algorithms to maintain a comfortable level of IAQ by balancing indoor and outdoor pollutant concentrations using the Indoor Air Quality Index approach. This paper describes hardware and software details of the system as well as the algorithms, models, and control strategies of the proposed solution which can be integrated in detached ventilation systems. Furthermore, a mobile app has been developed to inform, in real time, different-expertise-user profiles showing indoor and outdoor IAQ conditions. The system is implemented in a small prototype box and early-validated with different test cases considering various pollutant concentrations, reaching a Technology Readiness Level (TRL) of 3–4.



2021 ◽  
pp. 108237
Author(s):  
Jolanda Palmisani ◽  
Alessia Di Gilio ◽  
Mar Viana ◽  
Gianluigi de Gennaro ◽  
Andrea Ferro


2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.



2021 ◽  
Vol 13 (11) ◽  
pp. 6188
Author(s):  
Sungwan Son ◽  
Choon-Man Jang

For students, who spend most of their time in school classrooms, it is important to maintain indoor air quality (IAQ) to ensure a comfortable and healthy life. Recently, the ventilation performance for indoor air quality in elementary schools has emerged as an important social issue due to the increase in the number of days of continuous high concentrations of particulate matter. Three-dimensional numerical analysis has been introduced to evaluate the indoor airflow according to the installation location of return diffusers. Considering the possibility of the cross-infection of infectious diseases between students due to the direction of airflow in the classroom, the airflow angles of the average respiratory height range of elementary school students, between 1.0 and 1.5 m, are analyzed. Throughout the numerical analysis inside the classroom, it is found that the floor return system reduces the indoor horizontal airflow that causes cross-infection among students by 20% compared to the upper return systems. Air ventilation performance is also analyzed in detail using the results of numerical simulation, including streamlines, temperature and the age of air.



2016 ◽  
Vol 8 (9) ◽  
pp. 881 ◽  
Author(s):  
Jungho Kang ◽  
Kwang-Il Hwang


Sign in / Sign up

Export Citation Format

Share Document