scholarly journals Artificial intelligence‐based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance

2020 ◽  
Vol 47 (5) ◽  
Author(s):  
Geetha Mahadevaiah ◽  
Prasad RV ◽  
Inigo Bermejo ◽  
David Jaffray ◽  
Andre Dekker ◽  
...  
Author(s):  
Schallig Matheus ◽  
Vaez Barzani Den

The growing availability of medical data has sparked fresh interests in Computerized Clinical Decision Support Systems (CDSS), thanks to recent breakthroughs in machine and deep learning. CDSS has showed a lot of promise in terms of improving healthcare, enhancing the safety of patients and minimizing treatment costs. The application of CDSS, nonetheless, is unsafe since an insufficient or defective CDSS may possibly degrade healthcare quality and place patients at potential threat. Furthermore, the deployment of a CDSS may fail when the CDSS's output is ignored by its intended users owing to a lack of confidence, relevance, or actionability. We offer literature-based advice for the various elements of CDSS adoption, with a particular emphasis on Artificial Intelligence (AI) and Machine Learning (ML) systems: quality assurance, deployment, commissioning, acceptability tests, and selection, in this research. A critical selection process will assist in the process of identifying CDSS, which effectively suits the localized sites’ needs and preferences. Acceptance testing ensures that the chosen CDSS meets the specified standards and meets the safety criteria. The CDSS will be ready for safe clinical usage at the local site once the commissioning procedure is completed. An efficient system implementation must result in a smooth rollout of the CDSS to well-trained end-users with reasonable expectations. Furthermore, quality assurance will ensure that the CDSS's levels are maintained and that any problems are discovered and resolved quickly. We conclude this research by discussing the methodical adoption process for CDSS to assist in avoiding issues, enhance the safety of patients and increasing quality of service.


2019 ◽  
Vol 42 (3) ◽  
pp. 771-779 ◽  
Author(s):  
Tayyebe Shabaniyan ◽  
Hossein Parsaei ◽  
Alireza Aminsharifi ◽  
Mohammad Mehdi Movahedi ◽  
Amin Torabi Jahromi ◽  
...  

2021 ◽  
Author(s):  
Jeonghwan Hwang ◽  
Taeheon Lee ◽  
Honggu Lee ◽  
Seonjeong Byun

BACKGROUND Despite the unprecedented performances of deep learning algorithms in clinical domains, full reviews of algorithmic predictions by human experts remain mandatory. Under these circumstances, artificial intelligence (AI) models are primarily designed as clinical decision support systems (CDSSs). However, from the perspective of clinical practitioners, the lack of clinical interpretability and user-centered interfaces block the adoption of these AI systems in practice. OBJECTIVE The aim of this study was to develop an AI-based CDSS for assisting polysomnographic technicians in reviewing AI-predicted sleep staging results. This study proposed and evaluated a CDSS that provides clinically sound explanations for AI predictions in a user-centered fashion. METHODS User needs for the system were identified during interviews with polysomnographic technicians. User observation sessions were conducted to understand the workflow of the practitioners during sleep scoring. Iterative design process was performed to ensure easy integration of the tool into clinical workflows. Then, we evaluated the system with polysomnographic technicians. We measured the improvements in sleep staging accuracies after adopting our tool and assessed qualitatively how the participants perceived and used the tool. RESULTS The user study revealed that technicians desire explanations relevant to key electroencephalogram (EEG) patterns for sleep staging when assessing the correctness of the AI predictions. Here, technicians could evaluate whether AI models properly locate and use those patterns during prediction. Based on this, information in AI models that is closely related to sleep EEG patterns was formulated and visualized during the iterative design process. Furthermore, we developed a different visualization strategy for each pattern based on the way the technicians interpreted the EEG recordings with these patterns during their workflows. Generally, the tool evaluation results from the nine polysomnographic technicians were positive. Quantitatively, technicians achieved better classification performances after reviewing the AI-generated predictions with the proposed system; classification accuracies measured with Macro-F1 scores improved from 60.20 to 62.71. Qualitatively, participants reported that the provided information from the tool effectively supported them, and they were able to develop notable adoption strategies for the tool. CONCLUSIONS Our findings indicate that formulating clinical explanations for automated predictions using the information in the AI with a user-centered design process is an effective strategy for developing a CDSS for sleep staging.


JAMA ◽  
2018 ◽  
Vol 320 (21) ◽  
pp. 2199 ◽  
Author(s):  
Edward H. Shortliffe ◽  
Martin J. Sepúlveda

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6209
Author(s):  
Andrei Velichko

Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3–10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.


2020 ◽  
pp. 167-186
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


Sign in / Sign up

Export Citation Format

Share Document