Substituent-Induced chemical shifts of 2-phenylthiazolidines—1H NMR study

1990 ◽  
Vol 28 (9) ◽  
pp. 743-745 ◽  
Author(s):  
R. Umarani
Keyword(s):  
1H Nmr ◽  
1996 ◽  
Vol 315 (3) ◽  
pp. 895-900 ◽  
Author(s):  
Vasudevan RAMESH ◽  
Tom BROWN

A 1H-NMR study of the binding of L-tryptophan to the trp RNA-binding attenuation protein of Bacillus subtilis (TRAP), an ondecamer (91.6 kDa), has been implemented. The assignment of the aromatic indole ring proton resonances of the bound tryptophan ligand has been successfully carried out by two-dimensional chemical exchange experiments. The observation of only a single set of chemical shifts of the bound ligand demonstrates that the tryptophan binding site is identical in all the 11 subunits of the protein. Further, the large change in ligand chemical shifts suggests that the conformation of tryptophan ligand undergoes a significant rearrangement after complex formation with TRAP. This is further substantiated by the extensive ligand-induced chemical shift changes observed to the protein resonances and identification of several strong ligand–protein intermolecular nuclear Overhauser effects. A correlation of these preliminary NMR data with the X-ray crystal structure of the TRAP–tryptophan complex also suggests, tentatively, that the observed changes to the NMR spectra of the protein might correspond to changes associated with residues surrounding the tryptophan binding pocket owing to complex formation.


2017 ◽  
Vol 68 (6) ◽  
pp. 1170-1173 ◽  
Author(s):  
Adriana Nita ◽  
Delia Mirela Tit ◽  
Lucian Copolovici ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Dana Copolovici ◽  
...  

The aim of this study was to obtain and to characterize some inclusion complexes of famotidine and nizatidine with b-cyclodextrin (b-CD) in solution. The formation of famotidine- and nizatidine - b-CD complexes were evaluated by means of 1H-NMR spectroscopy. Thereafter, the stoichiometry and association constants of the complexes obtained were calculated via a continuous variation method by using the chemical shifts of specific protons from both host and guest molecules. The association constants calculated are 179.6 M--1for famotidine - b-cyclodextrin complex, and 74.9 M-1 for nizatidine - b-cyclodextrin complex, at 295 K. Due to their better stability, these complexes could be use as oral pharmaceutical preparations with better taste compared with that of free drugs.


2004 ◽  
Vol 114 ◽  
pp. 377-378 ◽  
Author(s):  
Y. Shimizu ◽  
K. Miyagawa ◽  
K. Oda ◽  
K. Kanoda ◽  
M. Maesato ◽  
...  

Author(s):  
Abril C. Castro ◽  
David Balcells ◽  
Michal Repisky ◽  
Trygve Helgaker ◽  
Michele Cascella

2020 ◽  
Vol 23 (7) ◽  
pp. 568-586
Author(s):  
Samy M. Ahmed ◽  
Ibrahim A. Shaaban ◽  
Elsayed H. El-Mossalamy ◽  
Tarek A. Mohamed

Objective: Two novel Schiff bases named, 2-((2-Hydroxybenzylidene)amino)-4,5,6,7- tetrahydrobenzo[b] thiophene-3-carbonitrile (BESB1) and 2-((Furan-2-ylmethylene)amino)-4,5,6, 7-tetrahydro-benzo[b]thiophene-3-carbonitrile (BESB2) were synthesized. Methods: The structures were characterized based on CHN elemental analysis, mid-infrared (400– 4000 cm-1), Raman (100-4000 cm-1), 1H NMR, mass and UV-Vis spectroscopic measurements. In addition, quantum mechanical calculations using DFT-B3LYP method at 6-31G(d) basis set were carried out for both Schiff bases. Initially, we have carried out complete geometry optimizations followed by frequency calculations for the proposed conformational isomers; BESB1 (A–E) and BESB2 (F–J) based on the orientations of both CN and OH groups against the azomethine lonepair (NLP) in addition to the 3D assumption. Results: The computational outcomes favor conformer A for BESB1 in which the C≡N and OH moieties are cis towards the NLP while conformer G is preferred for BESB2 (the C≡N/furan-O are cis/trans towards the NLP) which was found consistent with the results of relaxed potential energy surface scan. Aided by normal coordinate analysis of the Cartesian coordinate displacements, we have suggested reliable vibrational assignments for all observed IR and Raman bands. Moreover, the electronic absorption spectra for the favored conformers were predicted in DMSO solution using TD-B3LYP/6-31G(d) calculations. Similarly, the 1H NMR chemical shifts were also estimated using GIAO approach implementing PCM including solvent effects (DMSO-d6). Conclusion: Proper interpretations of the observed electronic transition, chemical shifts, IR and Raman bands were presented in this study.


1991 ◽  
Vol 56 (7) ◽  
pp. 1505-1511 ◽  
Author(s):  
Antonín Lyčka ◽  
Karel Palát
Keyword(s):  
1H Nmr ◽  
H Nmr ◽  

The 15N, 13C, and 1H NMR spectra of the reaction products from arylguanidines with two mols of chloroformate esters have been measured. With application of the corresponding 15N isotopomer it has been proved that the reaction products have the structures IIIa-IIIc.


Sign in / Sign up

Export Citation Format

Share Document