scholarly journals An approach to fast 2D nuclear magnetic resonance at low concentration based on p‐H 2 ‐induced polarization and nonuniform sampling

Author(s):  
Ruud L. E. G. Aspers ◽  
Marco Tessari
Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. MR73-MR84 ◽  
Author(s):  
Fatemeh Razavirad ◽  
Myriam Schmutz ◽  
Andrew Binley

We have evaluated several published models using induced polarization (IP) and nuclear magnetic resonance (NMR) measurements for the estimation of permeability of hydrocarbon reservoir samples. IP and NMR measurements were made on 30 samples (clean sands and sandstones) from a Persian Gulf hydrocarbon reservoir. We assessed the applicability of a mechanistic IP-permeability model and an empirical IP-permeability model recently proposed. The mechanistic model results in a broader range of permeability estimates than those measured for sand samples, whereas the empirical model tends to overestimate the permeability of the samples that we tested. We also evaluated an NMR permeability prediction model that is based on porosity [Formula: see text] and the mean of the log transverse relaxation time ([Formula: see text]). This model provides reasonable permeability estimations for the clean sandstones that we tested but relies on calibrated parameters. We also examined an IP-NMR permeability model, which is based on the peak of the transverse relaxation time distribution, [Formula: see text] and the formation factor. This model consistently underestimates the permeability of the samples tested. We also evaluated a new model. This model estimates the permeability using the arithmetic mean of log transverse NMR relaxation time ([Formula: see text]) and diffusion coefficient of the pore fluid. Using this model, we improved estimates of permeability for sandstones and sand samples. This permeability model may offer a practical solution for geophysically derived estimates of permeability in the field, although testing on a larger database of clean granular materials is needed.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E215-E226 ◽  
Author(s):  
Andreas Weller ◽  
Sven Nordsiek ◽  
Wolfgang Debschütz

Two techniques to estimate permeability are compared in this paper: nuclear magnetic resonance (NMR) and spectral-induced polarization (SIP). Both methods are based on relaxation processes. NMR records the relaxation of hydrogen nuclei after excitation in an external magnetic field. The phenomenon of induced polarization can be characterized by a relaxation of ions after excitation by an electric field. Hydrogen nuclei are concentrated in the pore water, the current flow is restricted to the pore space for most reservoir rocks, and permeability is related to the pore space geometry. Based on the similarity between fluid movement and current flow in the pore space, different relations have been published linking parameters derived from NMRand SIP data to predict permeability. NMR, SIP and permeability data have been acquired on 53 sandstone samples of the cretaceous Bahariya Formation (Western Desert, Egypt) including 27 samples showing a lamination that causes anisotropy. We compare the applicability of known and generalized relations for permeability prediction including isotropic and anisotropic samples. Because NMR relaxation ignores directionality of pore space geometry, the known relations provide only a weak accuracy in permeability estimation. The integrating parameters derived from a Debye decomposition of SIP data are partly sensitive to anisotropy. A generalized power-law relation using resistivity, chargeability, and mean relaxation time provide a reliable permeability prediction for isotropic and anisotropic samples.


2012 ◽  
Vol 32 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Hussain Masoom ◽  
Denis Courtier-Murias ◽  
Hashim Farooq ◽  
Ronald Soong ◽  
Myrna J. Simpson ◽  
...  

Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Paul C. Lauterbur

Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.


Sign in / Sign up

Export Citation Format

Share Document