No‐reference image quality assessment of magnetic resonance images with high‐boost filtering and local features

2020 ◽  
Vol 84 (3) ◽  
pp. 1648-1660 ◽  
Author(s):  
Mariusz Oszust ◽  
Adam Piórkowski ◽  
Rafał Obuchowicz

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rafal Obuchowicz ◽  
Mariusz Oszust ◽  
Adam Piorkowski

Abstract Background The perceptual quality of magnetic resonance (MR) images influences diagnosis and may compromise the treatment. The purpose of this study was to evaluate how the image quality changes influence the interobserver variability of their assessment. Methods For the variability evaluation, a dataset containing distorted MRI images was prepared and then assessed by 31 experienced medical professionals (radiologists). Differences between observers were analyzed using the Fleiss’ kappa. However, since the kappa evaluates the agreement among radiologists taking into account aggregated decisions, a typically employed criterion of the image quality assessment (IQA) performance was used to provide a more thorough analysis. The IQA performance of radiologists was evaluated by comparing the Spearman correlation coefficients, ρ, between individual scores with the mean opinion scores (MOS) composed of the subjective opinions of the remaining professionals. Results The experiments show that there is a significant agreement among radiologists (κ=0.12; 95% confidence interval [CI]: 0.118, 0.121; P<0.001) on the quality of the assessed images. The resulted κ is strongly affected by the subjectivity of the assigned scores, separately presenting close scores. Therefore, the ρ was used to identify poor performance cases and to confirm the consistency of the majority of collected scores (ρmean = 0.5706). The results for interns (ρmean = 0.6868) supports the finding that the quality assessment of MR images can be successfully taught. Conclusions The agreement observed among radiologists from different imaging centers confirms the subjectivity of the perception of MR images. It was shown that the image content and severity of distortions affect the IQA. Furthermore, the study highlights the importance of the psychosomatic condition of the observers and their attitude.



Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1043
Author(s):  
Igor Stępień ◽  
Rafał Obuchowicz ◽  
Adam Piórkowski ◽  
Mariusz Oszust

The quality of magnetic resonance images may influence the diagnosis and subsequent treatment. Therefore, in this paper, a novel no-reference (NR) magnetic resonance image quality assessment (MRIQA) method is proposed. In the approach, deep convolutional neural network architectures are fused and jointly trained to better capture the characteristics of MR images. Then, to improve the quality prediction performance, the support vector machine regression (SVR) technique is employed on the features generated by fused networks. In the paper, several promising network architectures are introduced, investigated, and experimentally compared with state-of-the-art NR-IQA methods on two representative MRIQA benchmark datasets. One of the datasets is introduced in this work. As the experimental validation reveals, the proposed fusion of networks outperforms related approaches in terms of correlation with subjective opinions of a large number of experienced radiologists.



2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.



IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 60456-60466 ◽  
Author(s):  
Chen Yong ◽  
Fang Hao ◽  
Liu Huanlin


Sign in / Sign up

Export Citation Format

Share Document