Noninvasive assessment of myocardial energy metabolism and dynamics using in vivo deuterium MRS imaging

Author(s):  
Tao Wang ◽  
Xiao‐Hong Zhu ◽  
Huan Li ◽  
Yi Zhang ◽  
Wei Zhu ◽  
...  

2000 ◽  
Vol 11 (1) ◽  
pp. 23-26
Author(s):  
G. J. Brandon Bravo Bruinsma ◽  
J. J. Bredée ◽  
T. J. C. Ruigrok ◽  
C. J. A. Echteld


2003 ◽  
Vol 179 (1) ◽  
pp. 61-65 ◽  
Author(s):  
M. Kavianipour ◽  
G. Wikström ◽  
G. Ronquist ◽  
A. Waldenström


1993 ◽  
Vol 34 (3) ◽  
pp. 313-331 ◽  
Author(s):  
Satoshi TAKEO ◽  
Kouichi TANONAKA ◽  
Manabu AOKI ◽  
Yasufumi NAKAI ◽  
Atsushi SANBE ◽  
...  


1993 ◽  
Vol 134 (1) ◽  
pp. 79 ◽  
Author(s):  
N. A. P. Franken ◽  
L. Hollaar ◽  
F. J. Bosker ◽  
F. J. M. van Ravels ◽  
A. van der Laarse ◽  
...  


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinghui Huang ◽  
Shaobo Wang ◽  
Jie Zhou ◽  
Yong Liu ◽  
Changhong Du ◽  
...  

Abstract Cardiorenal syndrome type 4 (CRS4) is a common complication of chronic kidney disease (CKD), but the pathogenic mechanisms remain elusive. Here we report that morphological and functional changes in myocardial mitochondria are observed in CKD mice, especially decreases in oxidative phosphorylation and fatty acid metabolism. High phosphate (HP), a hallmark of CKD, contributes to myocardial energy metabolism dysfunction by downregulating peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α). Furthermore, the transcriptional factor interferon regulatory factor 1 (IRF1) is revealed as the key molecule upregulated by HP through histone H3K9 acetylation, and responsible for the HP-mediated transcriptional inhibition of PGC1α by directly binding to its promoter region. Conversely, restoration of PGC1α expression or genetic knockdown of IRF1 significantly attenuates HP-induced alterations in vitro and in vivo. These findings demonstrate that IRF1-PGC1α axis-mediated myocardial energy metabolism remodeling plays a crucial role in the pathogenesis of CRS4.



Sign in / Sign up

Export Citation Format

Share Document