MScanFit Motor Unit Number Estimation of Human Anconeus Muscle

2022 ◽  
Author(s):  
Ya Zong ◽  
Zhiyuan Lu ◽  
Maoqi Chen ◽  
Qin Xie ◽  
Ping Zhou
Author(s):  
Omid Rashidipour ◽  
K. Ming Chan

Motor unit number estimation (MUNE) is an electrophysiological method designed to quantify motor unit loss in target muscles of interest. Most of the techniques are noninvasive and are therefore well suited for longitudinal monitoring. In this brief review, we describe the more commonly used techniques and their applications in amyotrophic lateral sclerosis, poliomyelitis, spinal muscular atrophy and hereditary sensorimotor neuropathies. Findings in some of these studies offer important pathophysiological insights. Since conventional electrophysiologic methods are not sensible measures of motor neuronal loss, MUNE could play a potentially important role in the diagnosis, monitoring of disease progression and response to treatment in neuromuscular diseases in which motor unit loss is a major feature.


2018 ◽  
Vol 129 ◽  
pp. e80
Author(s):  
Christina S. Nielsen ◽  
Michael Vaeggemose ◽  
Anna B. Jacobsen ◽  
Anders Fuglsang-Frederiksen ◽  
Henning Andersen ◽  
...  

2012 ◽  
Vol 123 (9) ◽  
pp. e94
Author(s):  
Mana Higashihara ◽  
Masahiro Sonoo ◽  
Tomotaka Yamamoto ◽  
Yu Nagashima ◽  
Yasuo Terao ◽  
...  

2019 ◽  
Vol 122 (4) ◽  
pp. 1297-1311 ◽  
Author(s):  
K. A. Quinlan ◽  
E. J. Reedich ◽  
W. D. Arnold ◽  
A. C. Puritz ◽  
C. F. Cavarsan ◽  
...  

Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/− mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/− mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/− motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9–10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/− motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process. NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/− model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9–10, and specific electrophysiological changes in Smn2B/− motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.


Sign in / Sign up

Export Citation Format

Share Document