Pulse Trawling: The Impact of Pulsed Direct Current on Early Life Stages of Sole Solea solea

2018 ◽  
Vol 38 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Marieke Desender ◽  
Lisa Dumolein ◽  
Luc Duchateau ◽  
Dominique Adriaens ◽  
Daan Delbare ◽  
...  
2020 ◽  
Vol 650 ◽  
pp. 309-326
Author(s):  
A Ospina-Alvarez ◽  
S de Juan ◽  
J Alós ◽  
G Basterretxea ◽  
A Alonso-Fernández ◽  
...  

Despite the recognised effectiveness of networks of marine protected areas (MPAs) as a biodiversity conservation instrument, MPA network design frequently disregards the importance of connectivity patterns. In the case of sedentary marine populations, connectivity stems not only from the stochastic nature of the physical environment that affects dispersal of early life stages, but also from the spawning stock attributes that affect reproductive output (e.g. passive eggs and larvae) and survivorship. Early life stages are virtually impossible to track in the ocean. Therefore, numerical ocean current simulations coupled with egg and larval Lagrangian transport models remain the most common approach for the assessment of marine larval connectivity. Inferred larval connectivity may differ depending on the type of connectivity considered; consequently, the prioritisation of sites for the conservation of marine populations might also differ. Here, we introduce a framework for evaluating and designing MPA networks based on the identification of connectivity hotspots using graph theoretic analysis. As a case study, we used a network of open-access areas and MPAs off Mallorca Island (Spain), and tested its effectiveness for the protection of the painted comber Serranus scriba. Outputs from network analysis were used to (1) identify critical areas for improving overall larval connectivity, (2) assess the impact of species’ biological parameters in network connectivity and (3) explore alternative MPA configurations to improve average network connectivity. Results demonstrate the potential of graph theory to identify non-trivial egg/larval dispersal patterns and emerging collective properties of the MPA network, which are relevant for increasing protection efficiency.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9415
Author(s):  
Claire V.A. Lager ◽  
Mary Hagedorn ◽  
Kuʻulei S. Rodgers ◽  
Paul L. Jokiel

Successful reproduction and survival are crucial to the continuation and resilience of corals globally. As reef waters warm due to climate change, episodic largescale tropical storms are becoming more frequent, drastically altering the near shore water quality for short periods of time. Therefore, it is critical that we understand the effects warming waters, fresh water input, and run-off have on sexual reproduction of coral. To better understand the effects of these near shore stressors on Hawaiian coral, laboratory experiments were conducted at the Institute of Marine Biology to determine the independent effects of suspended sediment concentrations (100 mg l−1 and 200 mg l−1), lowered salinity (28‰), and elevated temperature (31 °C) on the successful fertilization, larval survival, and settlement of the scleractinian coral Montipora capitata. In the present study, early developmental stages of coral were exposed to one of three near shore stressors for a period of 24 h and the immediate (fertilization) and latent effects (larval survival and settlement) were observed and measured. Fertilization success and settlement were not affected by any of the treatments; however, larval survival was negatively affected by all of the treatments by 50% or greater (p > 0.05). These data show that early life stages of M. capitata may be impacted by near shore stressors associated with warming and more frequent storm events.


2013 ◽  
Vol 84 ◽  
pp. 13-25 ◽  
Author(s):  
Geneviève Lacroix ◽  
Gregory E. Maes ◽  
Loes J. Bolle ◽  
Filip A.M. Volckaert

2005 ◽  
Vol 83 (6) ◽  
pp. 845-850 ◽  
Author(s):  
Demian A.S Willette ◽  
John K Tucker ◽  
Fredric J Janzen

Forthcoming climate change is expected to impact the global biota, particularly by altering range limits. However, the roles of early life stages in affecting biogeography and the impact of climate change on reptiles are both poorly understood. Fitness of neonatal reptiles depends greatly on energy reserves and body size, which themselves are affected by abiotic conditions in laboratory experiments performed during embryonic development and posthatching dormancy. To test whether these relationships between environment and physiology hold in nature, we conducted a 6-year field study on a natural northern population of red-eared slider turtles, Trachemys scripta elegans (Wied-Neuwied, 1839). Climatic conditions varied substantially and impacted offspring phenotypes. Consistent with bioenergetic predictions, cohorts that experienced warmer periods of posthatching dormancy had less dry residual yolk mass than similar-sized hatchlings that experienced cooler overwintering periods. Thus, global warming may exert adverse effects on turtle energy reserves important to fitness during crucial early life stages; this negative physiological impact may extend to other ectotherms with obligate, nonfeeding stages.


Sign in / Sign up

Export Citation Format

Share Document