larval connectivity
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Nur Arafeh-Dalmau ◽  
Adrian Munguia-Vega ◽  
Fiorenza Micheli ◽  
Ainoa Vilalta-Navas ◽  
Juan Carlos Villasenor-Derbez ◽  
...  

Climate-smart conservation addresses the vulnerability of biodiversity to climate change impacts but may require transboundary considerations. Here, we adapt and refine 16 biophysical guidelines for climate-smart marine reserves for the transboundary California Bight ecoregion. We link several climate-adaptation strategies (e.g., maintaining connectivity, representing climate refugia, and forecasting effectiveness of protection) by focusing on kelp forests and associated species. We quantify transboundary larval connectivity along ~800 km of coast and find that the number of connections and the average density of larvae dispersing through the network under future climate scenarios could decrease by ~50%, highlighting the need to protect critical steppingstone nodes. We also find that although focal species will generally recover with 30% protection, marine heatwaves could hinder subsequent recovery in the following 50 years, suggesting that protecting climate refugia and expanding the coverage of marine reserves is a priority. Together, these findings provide a first comprehensive framework for integrating climate resilience for networks of marine reserves and highlight the need for a coordinated approach in the California Bight ecoregion.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 586
Author(s):  
Colm Tong ◽  
Karlo Hock ◽  
Nils C. Krueck ◽  
Vladimir Tyazhelnikov ◽  
Peter J. Mumby

In the design of marine protected areas (MPAs), tailoring reserve placement to facilitate larval export beyond reserve boundaries may support fished populations and fisheries through recruitment subsidies. Intuitively, capturing such connectivity could be purely based on optimising larval dispersal metrics such as export strength. However, this can lead to inefficient or redundant larval connectivity, as the subset of sites with the best connectivity metrics might share many of the same connections, making them, collectively, poor MPA candidates to provide recruitment subsidies to unprotected sites. We propose a simple, dynamic algorithm for reserve placement optimisation designed to select MPAs sequentially, maximising larval export to the overall network, whilst accounting for redundancy in supply from multiple sources. When applied to four regions in the Caribbean, the algorithm consistently outperformed approaches that did not consider supply redundancy, leading to, on average, 20% greater fished biomass in a simulated model. Improvements were most apparent in dense, strongly connected systems such as the Bahamas. Here, MPA placement without redundancy considerations produced fishery benefits worse than random MPA design. Our findings highlight the importance of considering redundancy in MPA design, and offer a novel, simple approach to improving MPA design for achieving fishery objectives.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Rita Bento ◽  
Georgenes Cavalcante ◽  
Daniel Mateos-Molina ◽  
Bernhard Riegl ◽  
Ivonne Bejarano

2021 ◽  
Vol 8 ◽  
Author(s):  
Patrick R. Pata ◽  
Aletta T. Yñiguez

The marine habitats of the Philippines are recognized to be some of the most biodiverse systems globally yet only 1.7% of its seas are designated as marine protected areas (MPAs) with varying levels of implementation. Many of these MPAs were established based on local-scale conservation and fisheries objectives without considering larger-scale ecological connections. The connectivity of reefs through larval dispersal is important in the regional-scale resilience against anthropogenic disturbances and is considered a significant criterion in planning for MPAs. In this study, we provide insights into the delineation of ecologically connected MPA networks using larval dispersal modeling and network analysis. We characterized the network properties of the Philippine coral reefs, organized as 252 reef nodes, based on the larval connectivity networks of a branching coral, sea urchin, and grouper. We then evaluated the distribution of the existing 1,060 MPAs relative to the connectivity patterns. All reef nodes were found to be highly interconnected with a mean shortest path ranging from 1.96 to 4.06. Reef nodes were then ranked according to their relative importance in regional connectivity based on five connectivity indices. Despite the between-organism and between-index variability in rankings, there were reefs nodes, mostly located offshore and at major straits, which consistently ranked high. We found that the distribution of existing MPAs partially capture some of the regional connectivity functions but there is a spatial mismatch between the primarily coastal MPAs and the high-ranking reef nodes. Furthermore, network partitioning identified subnetworks and dispersal barriers. The existing MPAs were found to be disproportionately distributed to a few subnetworks and that the largest subnetworks do not contain the greatest number of MPAs. Considering these gaps, we suggest expanding the coverage of protected areas especially in underrepresented reef networks to meaningfully capture national-scale connectivity and meet global conservation objectives.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paula Pattrick ◽  
Nicolas Weidberg ◽  
Wayne S. Goschen ◽  
Jennifer M. Jackson ◽  
Christopher D. McQuaid ◽  
...  

Within the coastal zone, oceanographic features, such as fronts, can have major effects on the abundance and distribution of larval fish. We investigated the effects of fronts on larval fish assemblages by jointly collecting physical (ADCP and CTD) and biological (larvae) data in the nearshore waters of the south coast of South Africa, on four separate neap-tide occasions. Accumulation of fish larvae at predominantly internal wave-associated fronts was observed, with higher larval densities inshore of and within the front than farther offshore. On each occasion, larvae of coastal species with pelagic eggs (Mugillidae and Sparidae) were numerically dominant at the front itself, while inshore of the front, larvae of coastal species with benthic eggs (Gobiesocidae and Gobiidae) were more abundant. Offshore catches mainly comprised Engraulidae (pelagic species with pelagic eggs) larvae, which were generally restricted to the bottom, where current velocities were onshore on each occasion. On the occasion when fast (>100 cm/s) currents prevailed, however, accumulation of the larvae of coastal species occurred offshore of the front, and larvae were mixed throughout the water column. Thus, larval occurrence at these coastal frontal systems was strongly affected by the degree of mixing by currents, which on most occasions resulted in onshore retention. The results underline the importance of frontal systems in determining the nearshore distributions of fish larvae, particularly by retaining coastal fish species in the inshore region. The environmental variability observed at these frontal systems has potential implications for larval connectivity of fish populations.


2021 ◽  
Author(s):  
Emilio Hernández-García ◽  
Alberto Baudena ◽  
Enrico Ser-Giacomi ◽  
Cristobal Lopez ◽  
Francesco d'Ovidio

<p>In the context of tracer transport in the ocean, we introduce a quantity, the crossroadness [1], which allows identifying the optimal disposition of a set of locations in order to monitor a given ocean surface region. The optimization is performed so that these sites observe the largest amount of water coming from the region and, at the same time, monitor waters coming from separate parts of the ocean. These are key criteria when deploying a marine observing network. Considering surface circulation, crossroadness measures at any location the extent of the ocean surface which transits in its neighborhood in a given time window. When the analysis is performed backward in time, this method allows us to identify the major sources which feed a target region. The method is first applied to a minimalistic model of a mesoscale eddy field, and then to realistic satellite-derived ocean currents in the Kerguelen area. In this region, we identify the optimal location of fixed stations capable of intercepting the trajectories of 43 surface drifters. We then illustrate the temporal persistence of the stations determined in this way. Finally, we identify possible hotspots of micro-nutrient enrichment for the recurrent spring phytoplanktonic bloom occurring there. Promising applications to other fields, such as larval connectivity or contaminant detection are discussed.</p><p>[1] A. Baudena, E. Ser-Giacomi, C. López, E. Hernández-García, F. d’Ovidio, Crossroads of the mesoscale circulation, Journal of Marine Systems 192, 1-14 (2019).</p>


2020 ◽  
Vol 246 ◽  
pp. 107035 ◽  
Author(s):  
Erika Meerhoff ◽  
Omar Defeo ◽  
Vincent Combes ◽  
Barbara C. Franco ◽  
Ricardo P. Matano ◽  
...  

2020 ◽  
Author(s):  
Nicole Phillips ◽  
Jeffrey Shima

Larvae of marine organisms play an important role in the dynamics of populations, are generally sensitive to environmental stressors, and vary dramatically among species in life history traits. We examined the effects of suspended sediments from terrestrial runoff on larval development, survival, and settlement of New Zealand sea urchins Evechinus chloroticus and abalone Haliotis iris. Larval urchins and abalone were reared under 5 suspended sediment regimes (variable concentrations and timing of exposure, benchmarked against nearby field conditions), and in the absence of sediments. Stage specific per capita mortality rates of urchin larvae increased with concentrations of suspended sediments, and generally, these rates (and the sensitivity of urchin larvae to sediments) decreased with age. Mortality rates of abalone similarly increased in response to sediment concentrations, although older larvae continued to incur high losses when exposed to sediments. Mortality rates of both abalone and urchins increased in response to acute exposure to sediments early in development. For urchins, this effect was immediate and coincident only with exposure to sediments, whereas elevated mortality rates persisted well after the removal of sediments for abalone. Cumulative survival to competency was similar among species and generally decreased with exposure time and/or concentration of sediments. Urchins were twice as likely to settle and metamorphose as abalone but patterns were not related to larval sediment regime for either species. The strong species specific responses to suspended sediments we observe may greatly alter patterns of larval connectivity in marine meta-communities. © Inter-Research 2006.


2020 ◽  
Author(s):  
Nicole Phillips ◽  
Jeffrey Shima

Larvae of marine organisms play an important role in the dynamics of populations, are generally sensitive to environmental stressors, and vary dramatically among species in life history traits. We examined the effects of suspended sediments from terrestrial runoff on larval development, survival, and settlement of New Zealand sea urchins Evechinus chloroticus and abalone Haliotis iris. Larval urchins and abalone were reared under 5 suspended sediment regimes (variable concentrations and timing of exposure, benchmarked against nearby field conditions), and in the absence of sediments. Stage specific per capita mortality rates of urchin larvae increased with concentrations of suspended sediments, and generally, these rates (and the sensitivity of urchin larvae to sediments) decreased with age. Mortality rates of abalone similarly increased in response to sediment concentrations, although older larvae continued to incur high losses when exposed to sediments. Mortality rates of both abalone and urchins increased in response to acute exposure to sediments early in development. For urchins, this effect was immediate and coincident only with exposure to sediments, whereas elevated mortality rates persisted well after the removal of sediments for abalone. Cumulative survival to competency was similar among species and generally decreased with exposure time and/or concentration of sediments. Urchins were twice as likely to settle and metamorphose as abalone but patterns were not related to larval sediment regime for either species. The strong species specific responses to suspended sediments we observe may greatly alter patterns of larval connectivity in marine meta-communities. © Inter-Research 2006.


Sign in / Sign up

Export Citation Format

Share Document