Optimal pricing for a short life-cycle product when customer price-sensitivity varies over time

2012 ◽  
Vol 59 (7) ◽  
pp. 552-576 ◽  
Author(s):  
Hongmin Li ◽  
Woonghee Tim Huh
2021 ◽  
Vol 17 (3) ◽  
pp. 1-38
Author(s):  
Lauren Biernacki ◽  
Mark Gallagher ◽  
Zhixing Xu ◽  
Misiker Tadesse Aga ◽  
Austin Harris ◽  
...  

There is an increasing body of work in the area of hardware defenses for software-driven security attacks. A significant challenge in developing these defenses is that the space of security vulnerabilities and exploits is large and not fully understood. This results in specific point defenses that aim to patch particular vulnerabilities. While these defenses are valuable, they are often blindsided by fresh attacks that exploit new vulnerabilities. This article aims to address this issue by suggesting ways to make future defenses more durable based on an organization of security vulnerabilities as they arise throughout the program life cycle. We classify these vulnerability sources through programming, compilation, and hardware realization, and we show how each source introduces unintended states and transitions into the implementation. Further, we show how security exploits gain control by moving the implementation to an unintended state using knowledge of these sources and how defenses work to prevent these transitions. This framework of analyzing vulnerability sources, exploits, and defenses provides insights into developing durable defenses that could defend against broader categories of exploits. We present illustrative case studies of four important attack genealogies—showing how they fit into the presented framework and how the sophistication of the exploits and defenses have evolved over time, providing us insights for the future.


2010 ◽  
Vol 97 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Ann M. Hirsch ◽  
Angie Lee ◽  
Weimin Deng ◽  
Shirley C. Tucker
Keyword(s):  

Author(s):  
Jinju Kim ◽  
Harrison Kim

AbstractShort-life cycle products are frequently replaced and discarded despite being resource-intensive. The short life span and the low utilization rate of the end-of-life products cause severe environmental problems and waste of resources. In the case of short-life cycle products, a new generation of products is released sooner than other products, therefore there are the opportunities to have various generations of products during the remanufacturing process. The commonality between generations increases the intergenerational component compatibility, which increases the efficiency of the manufacturing and remanufacturing processes, while at the same time weakening the performance difference between generations. This paper proposes a mathematical model to investigate the effect of commonality among generations on the overall production process. Based on various given new generation product designs with different commonality, we aim to propose optimal production planning and pricing strategies to maximize the total profitability and investigate how the results vary according to the commonality strategies between product generations.


2020 ◽  
Vol 26 (4) ◽  
pp. 3106-3122
Author(s):  
Peipei Liu

Accurate demand forecasting is always critical to supply chain management. However, many uncertain factors in the market make this issue a huge challenge. Especially during the current COVID-19 outbreak, the shortage of certain types of medical consumables has become a global problem. The intermittent demand forecast of medical consumables with a short life cycle brings some new challenges, such as the demand occurring randomly in many time periods with zero demand. In this research, a seasonal adjustment method is introduced to deal with seasonal influences, and a dynamic neural network model with optimized model selection procedure and an appropriate model selection criterion are introduced as the main forecasting models. In addition, in order to reduce the impact of zero demand, it adds some input nodes to the neural network by preprocessing the original input data. Lastly, a modified error measurement method is proposed for performance evaluation. Experimental results show that the proposed forecasting framework is superior to other intermittent demand models.


2019 ◽  
pp. 33-37
Author(s):  
W.H. Inmon ◽  
Daniel Linstedt ◽  
Mary Levins
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document