intermittent demand
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 41)

H-INDEX

25
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259764
Author(s):  
Ali Caner Türkmen ◽  
Tim Januschowski ◽  
Yuyang Wang ◽  
Ali Taylan Cemgil

Intermittency are a common and challenging problem in demand forecasting. We introduce a new, unified framework for building probabilistic forecasting models for intermittent demand time series, which incorporates and allows to generalize existing methods in several directions. Our framework is based on extensions of well-established model-based methods to discrete-time renewal processes, which can parsimoniously account for patterns such as aging, clustering and quasi-periodicity in demand arrivals. The connection to discrete-time renewal processes allows not only for a principled extension of Croston-type models, but additionally for a natural inclusion of neural network based models—by replacing exponential smoothing with a recurrent neural network. We also demonstrate that modeling continuous-time demand arrivals, i.e., with a temporal point process, is possible via a trivial extension of our framework. This leads to more flexible modeling in scenarios where data of individual purchase orders are directly available with granular timestamps. Complementing this theoretical advancement, we demonstrate the efficacy of our framework for forecasting practice via an extensive empirical study on standard intermittent demand data sets, in which we report predictive accuracy in a variety of scenarios.


2021 ◽  
Author(s):  
Kyle C McDermott ◽  
Ryan D Winz ◽  
Thom J Hodgson ◽  
Michael G Kay ◽  
Russell E King ◽  
...  

Purpose - Investigate the impact of additive manufacturing (AM) on the performance of a spare parts supply chain with a particular focus on underlying spare part demand patterns. Design/Methodology/Approach - This work evaluates various AM-enabled supply chain configurations through Monte Carlo simulation. Historical demand simulation and intermittent demand forecasting are used in conjunction with a mixed integer linear program to determine optimal network nodal inventory policies. By varying demand characteristics and AM capacity this work assesses how to best employ AM capability within the network. Findings - This research assesses the preferred AM-enabled supply chain configuration for varying levels of intermittent demand patterns and AM production capacity. The research shows that variation in demand patterns alone directly affects the preferred network configuration. The relationship between the demand volume and relative AM production capacity affects the regions of superior network configuration performance. Research limitations/implications - This research makes several simplifying assumptions regarding AM technical capabilities. AM production time is assumed to be deterministic and does not consider build failure probability, build chamber capacity, part size, part complexity, and post-processing requirements. Originality/value - This research is the first study to link realistic spare part demand characterization to AM supply chain design using quantitative modeling.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kyle C. McDermott ◽  
Ryan D. Winz ◽  
Thom J. Hodgson ◽  
Michael G. Kay ◽  
Russell E. King ◽  
...  

PurposeThe study aims to investigate the impact of additive manufacturing (AM) on the performance of a spare parts supply chain with a particular focus on underlying spare part demand patterns.Design/methodology/approachThis work evaluates various AM-enabled supply chain configurations through Monte Carlo simulation. Historical demand simulation and intermittent demand forecasting are used in conjunction with a mixed integer linear program to determine optimal network nodal inventory policies. By varying demand characteristics and AM capacity this work assesses how to best employ AM capability within the network.FindingsThis research assesses the preferred AM-enabled supply chain configuration for varying levels of intermittent demand patterns and AM production capacity. The research shows that variation in demand patterns alone directly affects the preferred network configuration. The relationship between the demand volume and relative AM production capacity affects the regions of superior network configuration performance.Research limitations/implicationsThis research makes several simplifying assumptions regarding AM technical capabilities. AM production time is assumed to be deterministic and does not consider build failure probability, build chamber capacity, part size, part complexity and post-processing requirements.Originality/valueThis research is the first study to link realistic spare part demand characterization to AM supply chain design using quantitative modeling.


Omega ◽  
2021 ◽  
pp. 102513
Author(s):  
Çerağ Pinçe ◽  
Laura Turrini ◽  
Joern Meissner

2021 ◽  
Author(s):  
John Boylan ◽  
Aris Syntetos

Sign in / Sign up

Export Citation Format

Share Document