A linear-time algorithm for thek-fixed-endpoint path cover problem on cographs

Networks ◽  
2007 ◽  
Vol 50 (4) ◽  
pp. 231-240 ◽  
Author(s):  
Katerina Asdre ◽  
Stavros D. Nikolopoulos
Author(s):  
Frank Gurski ◽  
Dominique Komander ◽  
Carolin Rehs ◽  
Jochen Rethmann ◽  
Egon Wanke

AbstractIn this article we consider the Directed Steiner Path Cover problem on directed co-graphs. Given a directed graph $$G=(V,E)$$ G = ( V , E ) and a set $$T \subseteq V$$ T ⊆ V of so-called terminal vertices, the problem is to find a minimum number of vertex-disjoint simple directed paths, which contain all terminal vertices and a minimum number of non-terminal vertices (Steiner vertices). The primary minimization criteria is the number of paths. We show how to compute in linear time a minimum Steiner path cover for directed co-graphs. This leads to a linear time computation of an optimal directed Steiner path on directed co-graphs, if it exists. Since the Steiner path problem generalizes the Hamiltonian path problem, our results imply the first linear time algorithm for the directed Hamiltonian path problem on directed co-graphs. We also give binary integer programs for the (directed) Hamiltonian path problem, for the (directed) Steiner path problem, and for the (directed) Steiner path cover problem. These integer programs can be used to minimize change-over times in pick-and-place machines used by companies in electronic industry.


Filomat ◽  
2021 ◽  
Vol 35 (4) ◽  
pp. 1333-1342
Author(s):  
Kien Nguyen ◽  
Nguyen Hung

We address the problem of reducing the edge lengths of a network within a given budget so that the sum of weighted distances from each vertex to others is minimized. We call this problem the reverse total weighted distance problem on networks. We first show that the problem is NP-hard by reducing the set cover problem to it in polynomial time. Particularly, we develop a linear time algorithm to solve the problem on a tree. For the problem on cycles, we devise an iterative approach without mentioning the exact complexity. Additionally, if the cycle has uniform edge lengths, we can prove that the specified approach runs in O(n3) time as each edge of the cycle can be reduced at most once, where n is the number of vertices in the underlying cycle.


2002 ◽  
Vol 44 (2) ◽  
pp. 193-204 ◽  
Author(s):  
D. S. Franzblau ◽  
A. Raychaudhuri

A minimum Hamiltonian completion of a graph G is a minimum-size set of edges that, when added to G, guarantee a Hamiltonian path. Finding a Hamiltonian completion has applications to frequency assignment as well as distributed computing. If the new edges are deleted from the Hamiltonian path, one is left with a minimum path cover, a minimum-size set of vertex-disjoint paths that cover the vertices of G. For arbitrary graphs, constructing a minimum Hamiltonian completion or path cover is clearly NP-hard, but there exists a linear-time algorithm for trees. In this paper we first give a description and proof of correctness for this linear-time algorithm that is simpler and more intuitive than those given previously. We show that the algorithm extends also to unicyclic graphs. We then give a new method for finding an optimal path cover or Hamiltonian completion for a tree that uses a reduction to a maximum flow problem. In addition, we show how to extend the reduction to construct, if possible, a covering of the vertices of a bipartite graph with vertex-disjoint cycles, that is, a 2-factor.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

Sign in / Sign up

Export Citation Format

Share Document