Convergence of the solution for the far scattered field of a conducting cylinder of arbitrary cross-section

1973 ◽  
Vol 5 (4) ◽  
pp. 557-564
Author(s):  
Lotfollah Shafai
1973 ◽  
Vol 51 (22) ◽  
pp. 2389-2394 ◽  
Author(s):  
J. D. Hunter

A method is derived for calculating the electromagnetic scattering from a conducting cylinder of arbitrary cross section moving with arbitrary velocity relative to the field source and the observer. Results are presented for a moving square cylinder for both TM and TE polarizations of the incident field.


2021 ◽  
Author(s):  
Frank Kataka Banaseka ◽  
Kofi Sarpong Adu-Manu ◽  
Godfred Yaw Koi-Akrofi ◽  
Selasie Aformaley Brown

A two-Dimensional Finite Element Method of electromagnetic (EM) wave propagation through the soil is presented in this chapter. The chapter employs a boundary value problem (BVP) to solve the Helmholtz time-harmonic electromagnetic model. An infinitely large dielectric object of an arbitrary cross-section is considered for scattering from a dielectric medium and illuminated by an incident wave. Since the domain extends to infinity, an artificial boundary, a perfectly matched layer (PML) is used to truncate the computational domain. The incident field, the scattered field, and the total field in terms of the z-component are expressed for the transverse magnetic (TM) and transverse electric (TE) modes. The radar cross-section (RCS), as a function of several other parameters, such as operating frequency, polarization, illumination angle, observation angle, geometry, and material properties of the medium, is computed to describe how a scatterer reflects an electromagnetic wave in a given direction. Simulation results obtained from MATLAB for the scattered field, the total field, and the radar cross-section are presented for three soil types – sand, loam, and clay.


1969 ◽  
Vol 47 (7) ◽  
pp. 795-804 ◽  
Author(s):  
L. Shafai

The two-dimensional problem of determining the electromagnetic field scattered by a cylinder of arbitrary cross section is reduced to the solution of first-order, coupled differential equations. The procedure for finding the surface currents, scattered field, and the scattering cross section for a perfectly-conducting cylinder is given in detail. A brief study of the scattering by a polygonal cylinder and n identical strips equally spaced azimuthally around the z axis is used to examine the behavior of the differential equations.


Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 1-9 ◽  
Author(s):  
Tanju Yelkenci

Abstract An inverse scattering problem of cylindrical bodies of arbitrary cross section buried in a circular cylinder with resistive boundary is presented. The reconstruction is obtained from the scattered field measurements for a plane wave illumination under the Born approximation. Illustrative examples are presented in order to see the applicability of the method as well as to see the effects of some parameters on the solution.


Sign in / Sign up

Export Citation Format

Share Document