Reproducing Kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition

2011 ◽  
Vol 27 (4) ◽  
pp. 867-886 ◽  
Author(s):  
Huanmin Yao
2017 ◽  
Vol 21 (4) ◽  
pp. 1575-1580 ◽  
Author(s):  
Yulan Wang ◽  
Mingjing Du ◽  
Chaolu Temuer

The aim of this work is to obtain a numerical solution of a time-fractional telegraph equation by a modified reproducing kernel method. Two numerical examples are given to show that the present method overcomes the drawback of the traditional reproducing kernel method and it is an easy and effective method.


2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kiliçman

We propose a reproducing kernel method for solving the telegraph equation with initial conditions based on the reproducing kernel theory. The exact solution is represented in the form of series, and some numerical examples have been studied in order to demonstrate the validity and applicability of the technique. The method shows that the implement seems easy and produces accurate results.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mustafa Inc ◽  
Ali Akgül ◽  
Adem Kılıçman

We investigate the effectiveness of reproducing kernel method (RKM) in solving partial differential equations. We propose a reproducing kernel method for solving the telegraph equation with initial and boundary conditions based on reproducing kernel theory. Its exact solution is represented in the form of a series in reproducing kernel Hilbert space. Some numerical examples are given in order to demonstrate the accuracy of this method. The results obtained from this method are compared with the exact solutions and other methods. Results of numerical examples show that this method is simple, effective, and easy to use.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Xinjian Zhang ◽  
Xiongwei Liu

A unified reproducing kernel method for solving linear differential equations with functional constraint is provided. We use a specified inner product to obtain a class of piecewise polynomial reproducing kernels which have a simple unified description. Arbitrary order linear differential operator is proved to be bounded about the special inner product. Based on space decomposition, we present the expressions of exact solution and approximate solution of linear differential equation by the polynomial reproducing kernel. Error estimation of approximate solution is investigated. Since the approximate solution can be described by polynomials, it is very suitable for numerical calculation.


Sign in / Sign up

Export Citation Format

Share Document