A taylor collocation method for solving high-order linear pantograph equations with linear functional argument

2010 ◽  
Vol 27 (6) ◽  
pp. 1628-1638 ◽  
Author(s):  
Mustafa Gülsu ◽  
Mehmet Sezer
Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


2017 ◽  
Vol 8 (1-2) ◽  
pp. 40 ◽  
Author(s):  
Mohamed Ramadan ◽  
Kamal Raslan ◽  
Talaat El Danaf ◽  
Mohamed A. Abd Elsalam

The purpose of this paper is to investigate the use of exponential Chebyshev (EC) collocation method for solving systems of high-order linear ordinary differential equations with variable coefficients with new scheme, using the EC collocation method in unbounded domains. The EC functions approach deals directly with infinite boundaries without singularities. The method transforms the system of differential equations and the given conditions to block matrix equations with unknown EC coefficients. By means of the obtained matrix equations, a new system of equations which corresponds to the system of linear algebraic equations is gained. Numerical examples are given to illustrative the validity and applicability of the method.


Author(s):  
Ayşe Kurt ◽  
Salih Yalçınbaş ◽  
Mehmet Sezer

A new collocation method based on the Fibonacci polynomials is introduced for the approximate solution of high order-linear Fredholm integro-differential-difference equations with the mixed conditions. The proposed method is analyzed to show the convergence of the method. Some further numerical experiments are carried out to demonstrate the method.


Sign in / Sign up

Export Citation Format

Share Document