On some generalized integral inequalities for functions whose second derivatives in absolute values are convex

Author(s):  
Erhan Set ◽  
Alper Ekinci

Author(s):  
Ohud Almutairi ◽  
Adem Kilicman

In this article, the new Hermite–Hadamard type inequalities are studied via generalized s-convexity on fractal sets. These inequalities derived on fractal sets are shown to be the generalized s-convexity on fractal sets. We proved that the absolute values of the first and second derivatives for the new inequalities are the generalization of s-convexity on fractal sets.



Author(s):  
Ohud Almutairi ◽  
Adem Kilicman

In this article, the new Hermite–Hadamard type inequalities are studied via generalized s-convexity on fractal sets. These inequalities derived on fractal sets are shown to be the generalized s-convexity on fractal sets. We proved that the absolute values of the first and second derivatives for the new inequalities are the generalization of s-convexity on fractal sets.



Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Ahmet Akdemir ◽  
Özdemir Emin ◽  
Ardıç Avcı ◽  
Abdullatif Yalçın

In this paper, firstly we prove an integral identity that one can derive several new equalities for special selections of n from this identity: Secondly, we established more general integral inequalities for functions whose second derivatives of absolute values are GA-convex functions based on this equality.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Havva Kavurmacı Önalan ◽  
Ahmet Ocak Akdemir ◽  
Merve Avcı Ardıç ◽  
Dumitru Baleanu

AbstractThe main motivation of this study is to bring together the field of inequalities with fractional integral operators, which are the focus of attention among fractional integral operators with their features and frequency of use. For this purpose, after introducing some basic concepts, a new variant of Hermite–Hadamard (HH-) inequality is obtained for s-convex functions in the second sense. Then, an integral equation, which is important for the main findings, is proved. With the help of this integral equation that includes fractional integral operators with Mittag-Leffler kernel, many HH-type integral inequalities are derived for the functions whose absolute values of the second derivatives are s-convex and s-concave. Some classical inequalities and hypothesis conditions, such as Hölder’s inequality and Young’s inequality, are taken into account in the proof of the findings.



2021 ◽  
Vol 5 (4) ◽  
pp. 144
Author(s):  
Hijaz Ahmad ◽  
Muhammad Tariq ◽  
Soubhagya Kumar Sahoo ◽  
Jamel Baili ◽  
Clemente Cesarano

In this paper, we propose some generalized integral inequalities of the Raina type depicting the Mittag–Leffler function. We introduce and explore the idea of generalized s-type convex function of Raina type. Based on this, we discuss its algebraic properties and establish the novel version of Hermite–Hadamard inequality. Furthermore, to improve our results, we explore two new equalities, and employing these we present some refinements of the Hermite–Hadamard-type inequality. A few remarkable cases are discussed, which can be seen as valuable applications. Applications of some of our presented results to special means are given as well. An endeavor is made to introduce an almost thorough rundown of references concerning the Mittag–Leffler functions and the Raina functions to make the readers acquainted with the current pattern of emerging research in various fields including Mittag–Leffler and Raina type functions. Results established in this paper can be viewed as a significant improvement of previously known results.



Filomat ◽  
2015 ◽  
Vol 29 (6) ◽  
pp. 1307-1314 ◽  
Author(s):  
Mehmet Sarikaya ◽  
Hatice Filiz ◽  
Mehmet Kiris


Author(s):  
Tooba Fayyaz ◽  
Nazia Irshad ◽  
Asif R Khan ◽  
Ghaus ur Rahman ◽  
Gholam Roqia




Sign in / Sign up

Export Citation Format

Share Document