Closed loop variable gain ILC for a class of nonlinear parabolic distributed parameter systems with moving boundaries

Author(s):  
Xisheng Dai ◽  
Hai Zhang ◽  
Qiqi Wu ◽  
Senping Tian
2022 ◽  
Vol 27 ◽  
pp. 1-20
Author(s):  
Yanfang Lei ◽  
Junmin Li ◽  
Ailiang Zhao

In this study, we focus on designing a robust piecewise adaptive controller to globally asymptotically stabilize a semilinear parabolic distributed parameter systems (DPSs) with external disturbance, whose nonlinearities are bounded by unknown functions. Firstly, a robust piecewise adaptive control is designed against the unknown nonlinearity and the external disturbance. Then, by constructing an appropriate Lyapunov–Krasovskii functional candidate (LKFC) and using the Wiritinger’s inequality and a variant of the Agmon’s inequality, it is shown that the proposed robust piecewise adaptive controller not only ensures the globally asymptotic stability of the closed-loop system, but also guarantees a given performance. Finally, two simulation examples are given to verify the validity of the design method.


2013 ◽  
Vol 455 ◽  
pp. 337-343
Author(s):  
Hai Long Xing ◽  
Wen Shan Cui

In this paper, the feedback control problem is considered for a class of parabolic distributed parameter systems (DPS). By employing a new Lyapunov-Krasovskii functional as well as the linear matrix inequality (LMI), a novel feedback controller is developed, which can guarantee the closed-loop system states uniformly convergent to zero. The stability conditions for closed-loop systems can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. At last, a numerical example shows the effectiveness of the presented LMI-based methods.


1996 ◽  
Vol 118 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Jai Hyuk Hwang ◽  
Doo Man Kim ◽  
Kyoung Ho Lim

In this paper, the effect of parameter and spatial discretization errors on the closed-loop behavior of distributed-parameter systems is analyzed for natural controls. If the control force designed on the basis of the postulated system with the parameter and discretization errors is applied to control the actual system, the closed-loop performance of the actual system will be degraded depending on the degree of the errors. The extent of deviation of the closed-loop performance from the expected one is derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportional to the magnitude of the parameter and discretization errors, and that the proportional coeffecient depends on the structures of the natural controls.


Sign in / Sign up

Export Citation Format

Share Document