Functional interface with polyaniline in UHMWPE fiber‐reinforced composites for enhanced interfacial adhesion and damage monitoring

2021 ◽  
Author(s):  
Bo Zhang ◽  
Lijie Yin ◽  
Wenting Wu ◽  
Ming Tian ◽  
Nanying Ning ◽  
...  
2011 ◽  
Vol 67 (3) ◽  
pp. 527-540 ◽  
Author(s):  
Xiaokang Zhang ◽  
Yaoxian Wang ◽  
Chong Lu ◽  
Shujun Cheng

2021 ◽  
pp. 095400832110089
Author(s):  
Ting Li ◽  
Zengxiao Wang ◽  
Hao Zhang ◽  
Yutong Cao ◽  
Zuming Hu ◽  
...  

The poor interfacial adhesion of aramid fiber and matrix limits the application of the final composites. In this study, a series of the sulfone-functionalized poly( p-phenylene terephthalamide) (SPPTA) copolymers were satisfactorily synthesized and the effects of polymerization conditions (contents of the additional monomer and the cosolvent LiCl, molar concentration and ratio of the monomer, reaction temperature and time) on the molecular weight of the copolymer were discussed. The introduction of the sulfone group in aromatic polyamides not only increased the polarity of poly( p-phenylene terephthalamide) (PPTA) but destroyed the regular arrangement of the molecular chains, which greatly improved the surface free energy and the solubility of the polymers in organic solvents. The polymer maintained excellent thermal and interfacial properties. Compared with the PPTA fiber/epoxy composites, the interfacial shear strength (IFSS) of SPPTA fiber-reinforced epoxy composites reached 43.5 MPa, with a significantly enhancement of 20.8%, implying that the study provided an effective method to achieve highly interfacial adhesion of aramid fiber-reinforced composites.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1128 ◽  
Author(s):  
Dengxun Ren ◽  
Lin Chen ◽  
Yue Yuan ◽  
Kui Li ◽  
Mingzhen Xu ◽  
...  

The interfacial properties between fibers and resin matrices show great influence on the properties of fiber-reinforced composites. In this work, phthalonitrile containing benzoxazine (BA-ph) was chosen as the resin matrix, which combined with the glass fiber (GF) to prepare reinforced composite laminates at low temperature (200 °C). The poly(arylene ether nitrile) (PEN) was used to modify the GF and BA-ph matrix. Curing behaviors of the BA-ph/PEN were investigated with Differential scanning calorimetric (DSC) and Dynamic rheological analysis (DRA), and results indicated that the polymerization would be hindered by PEN due to the dilution effects. Moreover, the formation of triazine rings which assigning to the ring-forming polymerization of nitrile groups in BA-ph and PEN could improve the compatibility of BA-ph and PEN in the matrix. The SEM images of the fracture surface of the composites revealed that the brittleness of BA-ph matrix and interfacial adhesion between GFs and matrix was improved. The enhanced interfacial adhesion was detailedly discussed from the perspective of physical entanglement and the copolymerization between PEN chains on the surface of GFs and BA-ph/PEN matrix. The results of DMA also explained the toughness of BA-ph/PEN matrix, the semi-interpenetrating polymer networks and the interfacial adhesion. In sum, a feasible strategy that modifies the surface of GFs and the brittleness of the thermosetting matrix by high-performance thermoplastic polymers, which can be employed to prepare the composite laminates with improved properties.


2012 ◽  
Vol 70 (3) ◽  
pp. 821-835 ◽  
Author(s):  
Xiaokang Zhang ◽  
Yaoxian Wang ◽  
Shujun Cheng

2019 ◽  
Vol 14 ◽  
pp. 155892501987928
Author(s):  
Lei Wang ◽  
Chunxia He

In this article, rice husk fiber/polyvinyl chloride composites were prepared and analyzed. The optimal composition of mixed-particle-size fiber-reinforced composites was determined through orthogonal experimentation. The physical, mechanical, and thermal properties of the mixed-particle-size fiber-reinforced composites were compared to unprocessed (100 mesh) rice husk fiber/polyvinyl chloride composites. The surface microscopic appearances of the unprocessed and final composites were observed via laser microscope. Long-term accelerated soil aging caused micro-cracks to appear on the surfaces of the composites. Interfacial adhesion was observed via scanning electron microscopy. The results indicated that mixed-particle-size fibers can better fill interfacial gaps, leading to strong interfacial adhesion. Furthermore, the addition of mixed-particle-size fibers improves the soil aging resistance of composites. The hardness, flexural strength, impact strength, and first onset pyrolysis temperature (after 0 days) increase from 50 HRR, 35.2 MPa, 3.19 KJ/m2, and 258.5°C to 55 HRR, 39.4 MPa, 3.86 KJ/m2, and 261.2°C, respectively. However, the mass loss rate and thickness expansion rate (after 21 days) decrease from 2.9% and 0.79% to 2.21% and 0.74%, respectively. In general, the addition of mixed-particle-size fibers improves the ultimate properties of composites under soil aging conditions.


Sign in / Sign up

Export Citation Format

Share Document