Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide

2012 ◽  
Vol 62 (5) ◽  
pp. 827-835 ◽  
Author(s):  
I-Hsiang Tseng ◽  
Jen-Chi Chang ◽  
Shih-Liang Huang ◽  
Mei-Hui Tsai
Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1682
Author(s):  
Jaehyeung Park ◽  
Jaswinder Sharma ◽  
Kyle W. Monaghan ◽  
Harry M. Meyer ◽  
David A. Cullen ◽  
...  

The mechanical and thermal conductivity properties of two composite elastomers were studied. Styrene–butadiene rubber (SBR) filled with functionalized graphene oxide (GO) and silica nanofibers, and styrene–butadiene–styrene (SBS) block copolymers filled with graphene oxide. For the SBR composites, GO fillers with two different surface functionalities were synthesized (cysteamine and dodecylamine) and dispersed in the SBR using mechanical and liquid mixing techniques. The hydrophilic cysteamine-based GO fillers were dispersed in the SBR by mechanical mixing, whereas the hydrophobic dodecylamine-based GO fillers were dispersed in the SBR by liquid mixing. Silica nanofibers (SnFs) were fabricated by electrospinning a sol–gel precursor solution. The surface chemistry of the functionalized fillers was studied in detail. The properties of the composites and the synergistic improvements between the GO and SnFs are presented. For the SBS composites, GO fillers were dispersed in the SBS elastomer at several weight percent loadings using liquid mixing. Characterization of the filler material and the composite elastomers was performed using x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, nanoindentation, thermal conductivity and abrasion testing.


2019 ◽  
Vol 9 ◽  
pp. 184798041882103 ◽  
Author(s):  
Srosh Fazil ◽  
Masroor Bangesh ◽  
Wajid Rehman ◽  
Khurram Liaqat ◽  
Shaukat Saeed ◽  
...  

Ethyltriethoxysilane-functionalized graphene oxide/polyimide composite films were synthesized. Eighty percent improvement in Young’s modulus, high thermal stability at 800°C, and 3.46-fold increase in dielectric constants compared to polyimide with a dielectric loss of only 0.035 were exhibited by these composite films.


2015 ◽  
Vol 19 (18) ◽  
pp. 1828-1837 ◽  
Author(s):  
George V. Theodosopoulos ◽  
Panayiotis Bilalis ◽  
Georgios Sakellariou

Sign in / Sign up

Export Citation Format

Share Document