scholarly journals Fault detection and diagnosis in photovoltaic panels by radiometric sensors embedded in unmanned aerial vehicles

Author(s):  
Isaac Segovia Ramírez ◽  
Bikramaditya Das ◽  
Fausto Pedro García Márquez
2014 ◽  
Vol 494-495 ◽  
pp. 861-864
Author(s):  
Yi Peng Zhang ◽  
Ke Cai Cao

The reliability of unmanned aerial vehicles (UAVs) has caught the attention of many researchers in the past decades. This paper presents a review on the development and important issues of state-of-the-art researches in the field of fault detection and diagnosis (FDD) techniques. Faults on an individual unmanned aerial vehicle or a group of unmanned aerial vehicles are considered for providing an overall picture of fault detection and diagnosis approaches.


Author(s):  
Qian Zhang ◽  
Xueyun Wang ◽  
Xiao Xiao ◽  
Chaoying Pei

A secure control system is of great importance for unmanned aerial vehicles, especially in the condition of fault data injection. As the source of the feedback control system, the Inertial navigation system/Global position system (INS/GPS) is the premise of flight control system security. However, unmanned aerial vehicles have the requirement of lightweight and low cost for airborne equipment, which makes redundant device object unrealistic. Therefore, the method of fault detection and diagnosis is desperately needed. In this paper, a fault detection and diagnosis method based on fuzzy system and neural network is proposed. Fuzzy system does not depend on the mathematical model of the process, which overcomes the difficulties in obtaining the accurate model of unmanned aerial vehicles. Neural network has a strong self-learning ability, which could be used to optimize the membership function of fuzzy system. This paper is structured as follows: first, a Kalman filter observer is introduced to calculate the residual sequences caused by different sensor faults. Then, the sequences are transmitted to the fault detection and diagnosis system and fault type can be obtained. The proposed fault detection and diagnosis algorithm was implemented and evaluated with real datasets, and the results demonstrate that the proposed method can detect the sensor faults successfully with high levels of accuracy and efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiaxin Gao ◽  
Qian Zhang ◽  
Jiyang Chen

Flight safety is of vital importance for tilt-rotor unmanned aerial vehicles (UAVs), which can take off and land vertically as well as cruise at high speed, especially in different kinds of complex environment. As being the executor of the flight control, the actuator failure will directly affect the controllability of the tilt-rotor UAV, and it has high probability of causing fatal personal injury and financial loss. However, due to the limitation of weight and cost, small UAVs cannot be equipped with redundant actuators. Therefore, there is an urgent need of fault detection and diagnosis method for the actuators. In this paper, an actuator fault detection and diagnosis (FDD) method based on the extended Kalman filter (EKF) and multiple-model adaptive estimation (MMAE) is proposed. The actuator deflections are added to the state vector and estimated using EKF. The fault diagnosis algorithm of MMAE could assign a conditional probability to each faulty actuator according to the residual of EKF and diagnose the fault. This paper is structured as follows: first, the structure and model of tilt-rotor UAV actuator are established. Then, EKF observers are introduced to estimate the state vector and to calculate residual sequences caused by different faulty actuators. The residuals from EKFs are used by fault diagnosis algorithm to assign a conditional probability to each failure condition, and fault type can be diagnosed according to the probabilities. The FDD method is verified by simulations, and the results demonstrate that the FDD algorithm could accurately and efficiently diagnose actuator fault without any additional sensor.


Sign in / Sign up

Export Citation Format

Share Document