A constant shear stress strategy for establishing in situ viscosity models of photoinduced polymerization of acrylamide

Author(s):  
Guangdong Sun ◽  
Yi Huang ◽  
Lingling Lv ◽  
Dapeng Li ◽  
Qinguo Fan ◽  
...  
2010 ◽  
Vol 47 (6) ◽  
pp. 648-661 ◽  
Author(s):  
S. M. Junaideen ◽  
L. G. Tham ◽  
K. T. Law ◽  
F. C. Dai ◽  
C. F. Lee

The significance of studying soil behaviour in a constant shear stress path to understand rain-induced slope failures and debris flows has long been recognized. Studies with constant shear tests have, however, been limited, and some past results from undisturbed soils appear to show stress path–dependent volume change behaviour. The present study systematically investigates the behaviour of recompacted residual soils in a constant shear stress path using a comprehensive experimental program. It is shown that the results of this test program and previously published data can be interpreted using the concepts of critical-state soil mechanics.


2011 ◽  
Vol 51 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Hiroshi Ohkawa ◽  
Jiro Kuwano ◽  
Takafumi Nakada ◽  
Shinya Tachibana

2008 ◽  
Vol 18 (5) ◽  
pp. 53298-1-53298-13
Author(s):  
Daniel Quemada

Abstract Complex fluids exhibit time-dependent changes in viscosity that have been ascribed to both thixotropy and aging. However, there is no consensus for which phenomenon is the origin of which changes. A novel thixotropic model is defined that incorporates aging. Conditions under which viscosity changes are due to thixotropy and aging are unambiguously defined. Viscosity changes in a complex fluid during a period of rest after destructuring exhibit a bifurcation at a critical volume fraction ϕc2. For volume fractions less than ϕc2 the viscosity remains finite in the limit t →∞. For volume fractions above critical the viscosity grows without limit, so aging occurs at rest. At constant shear rate there is no bifurcation, whereas under constant shear stress the model predicts a new bifurcation in the viscosity at a critical stress σB, identical to the yield stress σy observed under steady conditions. The divergence of the viscosity for σ≤σB is best defined as aging. However, for σ > σB, where the viscosity remains finite, it seems preferable to use the concepts of restructuring and destructuring, rather than aging and rejuvenation. Nevertheless, when a stress σA(≤σB) is applied during aging, slower aging is predicted and discussed as true rejuvenation. Plastic behaviour is predicted under steady conditions when σ > σB. The Herschel-Bulkley model fits the flow curve for stresses close to σB, whereas the Bingham model gives a better fit for σ >> σB. Finally, the model’s predictions are shown to be consistent with experimental data from the literature for the transient behaviour of laponite gels.


Sign in / Sign up

Export Citation Format

Share Document