ductile shear zones
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 61)

H-INDEX

36
(FIVE YEARS 6)

Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Beihang Zhang ◽  
Jin Zhang ◽  
Heng Zhao ◽  
Junfeng Qu ◽  
Yiping Zhang ◽  
...  

Abstract Strike-slip faults are widely developed throughout the Central Asian Orogenic Belt (CAOB), one of the largest Phanerozoic accretionary orogenic collages in the world, and may have played a key role in its evolution. Recent studies have shown that a large number of Late Paleozoic–Early Mesozoic ductile shear zones developed along the southern CAOB. This study reports the discovery of a NW–SE striking, approximately 500 km long and up to 2 km wide regional ductile shear zone in the southern Alxa Block, the Southern Alxa Ductile Shear Zone (SADSZ), which is located in the central part of the southern CAOB. The nearly vertical mylonitic foliation and subhorizontal stretching lineation indicate that the SADSZ is a ductile strike-slip shear zone, and various kinematic indicators indicate dextral shearing. The zircon U-Pb ages and the 40Ar/39Ar plateau ages of the muscovite and biotite indicate that the dextral ductile shearing was active during Middle Permian to Middle Triassic (ca. 269–240 Ma). The least horizontal displacement of the SADSZ is constrained between ca. 40 and 50 km. The aeromagnetic data shows that the SADSZ is in structural continuity with the coeval shear zones in the central and northern Alxa Block, and these connected shear zones form a ductile strike-slip duplex in the central part of the southern CAOB. The ductile strike-slip duplex in the Alxa Block, including the SADSZ, connected the dextral ductile shear zones in the western and eastern parts of the southern CAOB to form a 3000 km long E-W trending dextral shear zone, which developed along the southern CAOB during Late Paleozoic to Early Mesozoic. This large-scale dextral shear zone was caused by the eastward migration of the orogenic collages and blocks of the CAOB and indicates a transition from convergence to transcurrent setting of the southern CAOB during Late Paleozoic to Early Mesozoic.


Author(s):  
Fabrizio Tursi

AbstractA careful petrologic analysis of mylonites’ mineral assemblages is crucial for a thorough comprehension of the rheologic behaviour of ductile shear zones active during an orogenesis. In this view, understanding the way new minerals form in rocks sheared in a ductile manner and why relict porphyroblasts are preserved in zones where mineral reactions are generally supposed to be deformation-assisted, is essential. To this goal, the role of chemical potential gradients, particularly that of H2O (µH2O), was examined here through phase equilibrium modelling of syn-kinematic mineral assemblages developed in three distinct mylonites from the Calabria polymetamorphic terrane. Results revealed that gradients in chemical potentials have effects on the mineral assemblages of the studied mylonites, and that new syn-kinematic minerals formed in higher-µH2O conditions than the surroundings. In each case study, the banded fabric of the mylonites is related to the fluid availability in the system, with the fluid that was internally generated by the breakdown of OH-bearing minerals. The gradients in µH2O favoured the origin of bands enriched in hydrated minerals alternated with bands where anhydrous minerals were preserved even during exhumation. Thermodynamic modelling highlights that during the prograde stage of metamorphism, high-µH2O was necessary to form new minerals while relict, anhydrous porphyroblasts remained stable in condition of low-µH2O even during exhumation. Hence, the approach used in this contribution is an in-depth investigation of the fluid-present/-deficient conditions that affected mylonites during their activity, and provides a more robust interpretation of their microstructures, finally helping to explain the rheologic behaviour of ductile shear zones.


Geosphere ◽  
2021 ◽  
Author(s):  
Andrew Tholt ◽  
Sean R. Mulcahy ◽  
William C. McClelland ◽  
Sarah M. Roeske ◽  
Vinícius T. Meira ◽  
...  

The Mesoproterozoic MARA terrane of western South America is a composite igneous-metamorphic complex that is important for Paleozoic paleogeographic reconstructions and the relative positions of Laurentia and Gondwana. The magmatic and detrital records of the MARA terrane are consistent with a Laurentian origin; however, the metamorphic and deformation records lack sufficient detail to constrain the correlation of units within the MARA terrane and the timing and mechanisms of accretion to the Gondwana margin. Combined regional mapping, metamorphic petrology, and garnet and monazite geochronology from the Sierra de Maz of northwest Argentina sug- gest that the region preserves four distinct litho-tectonic units of varying age and metamorphic conditions that are separated by middle- to lower-crustal ductile shear zones. The Zaino and Maz Complexes preserve Barrovian metamorphism and ages that are distinct from other units within the region. The Zaino and Maz Complexes both record metamorphism ca. 430–410 Ma and show no evidence of the regional Famatinian orogeny (ca. 490–455 Ma). In addition, the Maz Complex records an earlier granulite facies event at ca. 1.2 Ga. The Taco and Ramaditas Complexes, in contrast, experienced medium- and low-pressure upper amphibolite to granulite facies metamorphism, respectively, between ca. 470–460 Ma and were later deformed at ca. 440–420 Ma. The Maz shear zone that bounds the Zaino and Maz Complexes records sinistral oblique to sinistral deformation between ca. 430–410 Ma. The data suggest that at least some units in the MARA terrane were accreted by translation, and the Gondwana margin of northwest Argentina transitioned from a dominantly convergent margin to a highly oblique margin in the Silurian.


2021 ◽  
Vol 13 (3) ◽  
pp. 371-378
Author(s):  
Mohammad GHANBARIAN ◽  
◽  
Reza DERAKHSHANI ◽  
Morteza MAZIDI ◽  
◽  
...  

In the present study, fault slip data, the geometry of en-echelon vein arrays (tension gash), and pressure-solution seams (stylolites), in the northeastern margin of Fars Province were analyzed. The results of this study indicate that in the time of the development of these structures, the maximum principal (σ1) stress axes were generally horizontal and directed towards NE-SW and ENE-WSW. This general direction is compatible with the expected directions of σ1 stress axes responsible for the occurrence of the sinistral top-to-the NW ductile and brittle-ductile shear zones of the area. This compatibility suggests a long-lasting stable stress condition over a long period and different pressure/temperature conditions. This longstanding constant stress state can be interpreted as the result of the occurrence of a major strike-slip NW-SE trending fault in the NE of the Zagros Hinterland Fold-and-Thrust Belt. The dextral activities of the Main Zagros Thrust and this inferred fault, which are subparallel, might result in the sinistral topto-the NW deformation in the area between this fault, which we named it Abarkuh Fault and the Main Deep Fault. This inferred fault has been covered by Quaternary alluvium of the Abarkuh plain, but the great age difference of rock units of the Esteghlal Anticline and its northeastern rock exposures, and the significant change in topography between the Abarkuh plain and its southwestern mountains can be two consequences of the existence of this probable fault.


2021 ◽  
pp. geochem2020-082
Author(s):  
Maher Abdelrazek ◽  
Antonio Benedicto ◽  
Olivier Gerbaud ◽  
Patrick Ledru

Uranium mineralization in the Patterson Lake corridor (southwestern Churchill province, Canada) is hosted in the metamorphosed Paleoproterozoic basement covered to the North by the flat-lying sandstone formations of the Athabasca Basin. The mineralization is exclusively contained within inherited ductile structures that were reactivated under a brittle regime. Petrographic and micro-structural studies of drill core samples from the Spitfire discovery (Hook Lake Project) reveal the linkages between structural evolution of the basement, alteration and mineralization. During basement exhumation, localization of non-coaxial deformation led to the formation of a large anastomosing shear zone system made of mylonitic rocks. Strain localization associated with fluid circulation induced strong mineralogical and rheological changes, forming discontinuities in mechanical anisotropy. During and post-deposition of the Athabasca Basin after 1.80 Ga, these zones of anisotropy localized brittle reactivation, expressed by a network of micro-fractures later amplified by dissolution processes which enhanced porosity later filled with phyllosilicates and uranium oxides. Crosscutting relationships between alteration minerals and structures indicate that fluid circulation was active after the basement exhumation. Uranium-bearing fluids moved through the network of micro-fractures. As shown for the Spitfire prospect, fertile structures in the basement below the Athabasca Basin have a combined poly-phase structural and alteration history during which development of ductile shear zones followed by brittle reactivation and dissolution processes led to the formation of superimposed shear and damaged zones in which uranium orebodies are located.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways


Solid Earth ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 1357-1388
Author(s):  
Laurent Jolivet ◽  
Laurent Arbaret ◽  
Laetitia Le Pourhiet ◽  
Florent Cheval-Garabédian ◽  
Vincent Roche ◽  
...  

Abstract. Back-arc extension superimposed on mountain belts leads to distributed normal faults and shear zones interacting with magma emplacement within the crust. The composition of granitic magmas emplaced at this stage often involves a large component of crustal melting. The Miocene Aegean granitoids were emplaced in metamorphic core complexes (MCCs) below crustal-scale low-angle normal faults and ductile shear zones. Intrusion processes interact with extension and shear along detachments, from the hot magmatic flow within the pluton root zone to the colder ductile and brittle deformation below and along the detachment. A comparison of the Aegean plutons with the island of Elba MCC in the back-arc region of the Apennine subduction shows that these processes are characteristic of pluton–detachment interactions in general. We discuss a conceptual emplacement model, tested by numerical models. Mafic injections within the partially molten lower crust above the hot asthenosphere trigger the ascent within the core of the MCC of felsic magmas, controlled by the strain localization on persistent crustal-scale shear zones at the top that guide the ascent until the brittle ductile transition. Once the system definitely enters the brittle regime, the detachment and the upper crust are intruded, while new detachments migrate upward and in the direction of shearing.


2021 ◽  
pp. jgs2020-123
Author(s):  
Masoumeh Soleimani ◽  
Ali Faghih ◽  
Timothy Kusky

The Boneh Shurow metamorphic core complex (BSMCC) in the Central East Iranian Microcontinent (CEIM) provides a good example of the Mesozoic succession of nonsynchronous compressional and extensional deformation events attributed to the transitional Cimmerian events. The D1 compression developed subvertical dextral ductile shear zones and corresponds to continental accretion and crustal thickening producing kyanite- and sillimanite-grade rocks and migmatites in the Early Cimmerian orogeny in the CEIM. The D2 deformation event is marked by extension during the mid-Cimmerian orogeny. It is characterized by top-to-the-NE normal sense of shear along a low angle detachment surface. Field evidence for cross cutting relationships of D1- by D2-related structures reveal that the occurrence of Barrovian facies metamorphism and associated partial melting in the core of BSMCC formed during compressional tectonic events. These structures formed before the initiation of extension and the formation of the low-angle detachment shear zone. Finally, during the Late Cimmerian D3 event, the east and west Boneh Shurow reverse faults ruptured on both sides of the MCC. Recognition of the complicated origin and exhumation mechanisms of the BSMCC provide crucial constraints on the prolonged evolution of Paleo- and Neo-Tethys ocean basins and collisional and post-collisional events in this region.


2021 ◽  
pp. 1-15
Author(s):  
Deepak C. Srivastava ◽  
Ajanta Goswami ◽  
Amit Sahay

Abstract Delimiting the Aravalli mountain range in the east, the Great Boundary Fault (GBF) occurs as a crustal-scale tectonic lineament in the NW Indian Shield. The structural and tectonic characteristics of the GBF are, as yet, not well-understood. We attempt to fill this gap by using a combination of satellite image processing, high-resolution outcrop mapping and structural analysis around Chittaurgarh. The study area exposes the core and damage zone of the GBF. Three successive phases of folding, F1, F2 and F3, are associated with deformation in the GBF. The large-scale structural characteristics of the GBF core are: (i) a non-coaxial refolding of F1 folds by F2 folds; and (ii) the parallelism between the GBF and F2 axial traces. In addition, numerous metre-scale ductile shear zones cut through the rocks in the GBF core. The damage zone is characterized by the large-scale F1 folds and the mesoscopic-scale strike-slip faults, thrusts and brittle-ductile shear zones. Several lines of evidence, such as the inconsistent overprinting relationship between the strike-slip faults and thrusts, the occurrence of en échelon folds and the palaeostress directions suggest that the GBF is a dextral transpression fault zone. Structural geometry and kinematic indicators imply a wrench- and contraction-dominated deformation in the core and damage zone, respectively. We infer that the GBF is a strain-partitioned dextral transpression zone.


2021 ◽  
Author(s):  
Melanie Finch ◽  
Paul Bons ◽  
Florian Steinbach ◽  
Albert Griera ◽  
Maria-Gema Llorens ◽  
...  

<p>C' shear bands are common structures in ductile shear zones but their development is poorly understood. They occur in rocks with a high mechanical strength contrast so we used numerical models of viscoplastic deformation to study the effect of the proportion of weak phase and the phase strength contrast on C' shear band development. We employed simple shear to a finite strain of 18 in 900 steps and recorded the microstructure, stress and strain distribution at each step. We found that C' shear bands form in models with ≥5% weak phase when there is a moderate or high phase strength contrast, and they occur in all models with weak phase proportions ≥15%. Contrary to previous research, we find that C' shear bands form when layers of weak phase parallel to the shear zone boundary rotate forwards. This occurs due to mechanical instabilities that are a result of heterogeneous distributions of stress and strain rate. C' shear bands form on planes of low strain rate and stress, not in sites of maximum strain rate as has previously been suggested. C' shear bands are ephemeral and they either rotate backwards to the C plane once they are inactive or rotate into the field of shortening and thicken to form X- and triangle- shaped structures.</p>


Sign in / Sign up

Export Citation Format

Share Document