scholarly journals Experimental and Numerical Study on the Shear Strength and Strain Energy of Rock Under Constant Shear Stress and Unloading Normal Stress

2021 ◽  
Vol 127 (1) ◽  
pp. 79-97
Author(s):  
Tantan Zhu ◽  
Da Huang ◽  
Jianxun Chen ◽  
Yanbin Luo ◽  
Longfei Xu
1964 ◽  
Vol 86 (2) ◽  
pp. 157-162 ◽  
Author(s):  
W. K. Luk ◽  
R. C. Brewer

After briefly reviewing previous work in this field, the authors propose that rupture of the chip work contact (to give a discontinuous chip) is governed by a limiting shear strain energy condition. Assuming that shear stress and strain at rupture are dependent on the compressive normal stress, a criterion for the direction of the rupture plane is deduced. Using some results given by Field and Merchant, the authors then compare their calculated direction of rupture with that experimentally observed. Some indication that the agreement is not entirely fortuitous is afforded by checking the calculated shear strain energy at fracture with that calculated from force and chip measurements.


2011 ◽  
Vol 677 ◽  
pp. 483-502 ◽  
Author(s):  
C.-F. TAI ◽  
S. BIAN ◽  
D. HALPERN ◽  
Y. ZHENG ◽  
M. FILOCHE ◽  
...  

The liquid lining in small human airways can become unstable and form liquid plugs that close off the airways. Direct numerical simulations are carried out on an airway model to study this airway instability and the flow-induced stresses on the airway walls. The equations governing the fluid motion and the interfacial boundary conditions are solved using the finite-volume method coupled with the sharp interface method for the free surface. The dynamics of the closure process is simulated for a viscous Newtonian film with constant surface tension and a passive core gas phase. In addition, a special case is examined that considers the core dynamics so that comparisons can be made with the experiments of Bian et al. (J. Fluid Mech., vol. 647, 2010, p. 391). The computed flow fields and stress distributions are consistent with the experimental findings. Within the short time span of the closure process, there are large fluctuations in the wall shear stress. Furthermore, dramatic velocity changes in the film during closure indicate a steep normal stress gradient on the airway wall. The computational results show that the wall shear stress, normal stress and their gradients during closure can be high enough to injure airway epithelial cells.


2010 ◽  
Vol 47 (6) ◽  
pp. 648-661 ◽  
Author(s):  
S. M. Junaideen ◽  
L. G. Tham ◽  
K. T. Law ◽  
F. C. Dai ◽  
C. F. Lee

The significance of studying soil behaviour in a constant shear stress path to understand rain-induced slope failures and debris flows has long been recognized. Studies with constant shear tests have, however, been limited, and some past results from undisturbed soils appear to show stress path–dependent volume change behaviour. The present study systematically investigates the behaviour of recompacted residual soils in a constant shear stress path using a comprehensive experimental program. It is shown that the results of this test program and previously published data can be interpreted using the concepts of critical-state soil mechanics.


2011 ◽  
Vol 51 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Hiroshi Ohkawa ◽  
Jiro Kuwano ◽  
Takafumi Nakada ◽  
Shinya Tachibana

Sign in / Sign up

Export Citation Format

Share Document