Spontaneous formation of hierarchical proton-conductive structures in sulfonated poly(p-phenylene terephthalamide) copolymer films

2007 ◽  
Vol 45 (6) ◽  
pp. 666-676 ◽  
Author(s):  
Ciptanti Sisbandini ◽  
Hayley A. Every ◽  
Sebastien Viale ◽  
Eduardo Mendes ◽  
Stephen J. Picken
2018 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


2017 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 430-442 ◽  
Author(s):  
Rajdeep Mukherjee ◽  
Arun Kumar Mandal ◽  
Susanta Banerjee

AbstractSulfopropylated polysilsesquioxane and –COOH containing fluorinated sulfonated poly(arylene ether sulfone) composite membranes (SPAES-SS-X) have been prepared via an in situ sol–gel reaction through the solution casting technique. The composite membranes showed excellent thermal and chemical stability, compared to the pristine SPAES membrane. The uniform dispersion of the sulfonated SiOPS nanoparticles on the polymer matrix was observed from the scanning electron microscope images. Atomic force microscopy and transmission electron microscopy images indicated significantly better phase-separated morphology and connectivity of the ionic domains of the composite membranes than the pristine SPAES membrane. The composite membranes showed considerable improvement in proton conductivity and oxidative stability than the pristine copolymer membrane under similar test conditions.


2021 ◽  
Vol 54 (3) ◽  
pp. 1564-1573
Author(s):  
Maninderjeet Singh ◽  
Wenjie Wu ◽  
Monali N. Basutkar ◽  
Joseph Strzalka ◽  
Abdullah M. Al-Enizi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document