Determination of pollen accumulation rates in frozen sediments

1993 ◽  
Vol 4 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Xia-Cheng Wang ◽  
Marie-Anne Geurts
The Holocene ◽  
2021 ◽  
pp. 095968362098803
Author(s):  
Clarke A Knight ◽  
Mark Baskaran ◽  
M Jane Bunting ◽  
Marie Champagne ◽  
Matthew D Potts ◽  
...  

Quantitative reconstructions of vegetation abundance from sediment-derived pollen systems provide unique insights into past ecological conditions. Recently, the use of pollen accumulation rates (PAR, grains cm−2 year−1) has shown promise as a bioproxy for plant abundance. However, successfully reconstructing region-specific vegetation dynamics using PAR requires that accurate assessments of pollen deposition processes be quantitatively linked to spatially-explicit measures of plant abundance. Our study addressed these methodological challenges. Modern PAR and vegetation data were obtained from seven lakes in the western Klamath Mountains, California. To determine how to best calibrate our PAR-biomass model, we first calculated the spatial area of vegetation where vegetation composition and patterning is recorded by changes in the pollen signal using two metrics. These metrics were an assemblage-level relevant source area of pollen (aRSAP) derived from extended R-value analysis ( sensu Sugita, 1993) and a taxon-specific relevant source area of pollen (tRSAP) derived from PAR regression ( sensu Jackson, 1990). To the best of our knowledge, aRSAP and tRSAP have not been directly compared. We found that the tRSAP estimated a smaller area for some taxa (e.g. a circular area with a 225 m radius for Pinus) than the aRSAP (a circular area with a 625 m radius). We fit linear models to relate PAR values from modern lake sediments with empirical, distance-weighted estimates of aboveground live biomass (AGLdw) for both the aRSAP and tRSAP distances. In both cases, we found that the PARs of major tree taxa – Pseudotsuga, Pinus, Notholithocarpus, and TCT (Taxodiaceae, Cupressaceae, and Taxaceae families) – were statistically significant and reasonably precise estimators of contemporary AGLdw. However, predictions weighted by the distance defined by aRSAP tended to be more precise. The relative root-mean squared error for the aRSAP biomass estimates was 9% compared to 12% for tRSAP. Our results demonstrate that calibrated PAR-biomass relationships provide a robust method to infer changes in past plant biomass.


2012 ◽  
Vol 27 (6) ◽  
pp. 564-574 ◽  
Author(s):  
F. Mazier ◽  
A. B. Nielsen ◽  
A. Broström ◽  
S. Sugita ◽  
S. Hicks

The Holocene ◽  
2008 ◽  
Vol 18 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Thomas Giesecke ◽  
Sonia L. Fontana

2018 ◽  
Author(s):  
Ariane Arias-Ortiz ◽  
Pere Masqué ◽  
Jordi Garcia-Orellana ◽  
Oscar Serrano ◽  
Inés Mazarrasa ◽  
...  

Abstract. Vegetated coastal ecosystems, including tidal marsh, mangrove and seagrass, are being increasingly assessed for their potential in carbon dioxide sequestration worldwide. However, there is a paucity of studies that have effectively estimated the accumulation rates of sediment organic carbon (Corg) beyond the mere quantification of Corg stocks. Here, we discuss the use of the 210Pb dating technique as a practical tool to measure the rate of Corg accumulation in vegetated coastal ecosystems. We critically review the status of 210Pb dating methods of vegetated coastal sediments and assess the limitations that apply to these ecosystems, which are often composed by heterogeneous sediments, abundant in coarse particles, with varying inputs of organic material, and are disturbed by natural and anthropogenic processes causing sediment mixing, changes in sedimentation rates or erosion. Through a range of simulations, we discuss the most relevant processes that impact the 210Pb record in vegetated coastal ecosystems and evaluate the deviations in sediment and Corg accumulation rates produced by anomalies in 210Pb profiles. Our results show that the deviation in the determination of sediment and derived Corg accumulation rates is within 20 % confirming that the 210Pb dating technique is secure. However, while these uncertainties might be acceptable for the determination of mean sediment and Corg accumulation rates over the last century, they may not always allow the determination of a detailed geochronology, historical reconstruction, or to ascertain rates of change and fluxes. Additional tracers or geochemical data need to be used in concert to constrain the 210Pb-derived results and to properly interpret the processes recorded in vegetated coastal sediments. The framework provided in this study can be instrumental in reducing the uncertainties associated to the estimates of Corg accumulation rates in vegetated coastal sediments.


2008 ◽  
Vol 151 (3-4) ◽  
pp. 90-109 ◽  
Author(s):  
Martina Hättestrand ◽  
Christin Jensen ◽  
Margrét Hallsdóttir ◽  
Karl-Dag Vorren

Sign in / Sign up

Export Citation Format

Share Document