scholarly journals Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant

1998 ◽  
Vol 7 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Lin Hong ◽  
Jean A. Hartsuck ◽  
Steve Foundling ◽  
Jacques Ermoliefe ◽  
Jordan Tang
2007 ◽  
Vol 81 (17) ◽  
pp. 9512-9518 ◽  
Author(s):  
Madhavi N. L. Nalam ◽  
Anik Peeters ◽  
Tim H. M. Jonckers ◽  
Inge Dierynck ◽  
Celia A. Schiffer

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) protease has been continuously evolving and developing resistance to all of the protease inhibitors. This requires the development of new inhibitors that bind to the protease in a novel fashion. Most of the inhibitors that are on the market are peptidomimetics, where a conserved water molecule mediates hydrogen bonding interactions between the inhibitors and the flaps of the protease. Recently a new class of inhibitors, lysine sulfonamides, was developed to combat the resistant variants of HIV protease. Here we report the crystal structure of a lysine sulfonamide. This inhibitor binds to the active site of HIV-1 protease in a novel manner, displacing the conserved water and making extensive hydrogen bonds with every region of the active site.


2004 ◽  
Vol 78 (7) ◽  
pp. 3387-3397 ◽  
Author(s):  
Elena N. Peletskaya ◽  
Alex A. Kogon ◽  
Steven Tuske ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Site-directed photoaffinity cross-linking experiments were performed by using human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) mutants with unique cysteine residues at several positions (i.e., positions 65, 67, 70, and 74) in the fingers subdomain of the p66 subunit. Since neither the introduction of the unique cysteine residues into the fingers nor the modification of the SH groups of these residues with photoaffinity cross-linking reagents caused a significant decrease in the enzymatic activities of RT, we were able to use this system to measure distances between specific positions in the fingers domain of RT and double-stranded DNA. HIV-1 RT is quite flexible. There are conformational changes associated with binding of the normal substrates and nonnucleoside RT inhibitors (NNRTIs). Cross-linking was used to monitor intramolecular movements associated with binding of an NNRTI either in the presence or in the absence of an incoming deoxynucleoside triphosphate (dNTP). Binding an incoming dNTP at the polymerase active site decreased the efficiency of cross-linking but caused only modest changes in the preferred positions of cross-linking. This finding suggests that the fingers of p66 are closer to an extended template in the “open” configuration of the enzyme with the fingers away from the active site than in the closed configuration with the fingers in direct contact with the incoming dNTP. NNRTI binding caused increased cross-linking in experiments with diazirine reagents (especially with a diazirine reagent with a longer linker) and a moderate shift in the preferred sites of interaction with the template. Cross-linking occurred closer to the polymerase active site for RTs modified at positions 70 and 74. The effects of NNRTI binding were more pronounced in the absence of a bound dNTP; pretreatment of HIV-1 RT with an NNRTI reduced the effect of dNTP binding. These observations can be explained if the binding of NNRTI causes a decrease in the flexibility in the fingers subdomain of RT-NNRTI complex and a decrease in the distance from the fingers to the template extension.


Biochemistry ◽  
1992 ◽  
Vol 31 (42) ◽  
pp. 10153-10168 ◽  
Author(s):  
Thaddeus A. Tomaszek ◽  
Michael L. Moore ◽  
James E. Strickler ◽  
Robert L. Sanchez ◽  
J. Scott Dixon ◽  
...  

2004 ◽  
Vol 78 (16) ◽  
pp. 8477-8485 ◽  
Author(s):  
Steven C. Pettit ◽  
Lorraine E. Everitt ◽  
Sumana Choudhury ◽  
Ben M. Dunn ◽  
Andrew H. Kaplan

ABSTRACT Processing of the GagPol polyprotein precursor of human immunodeficiency virus type 1 (HIV-1) is a critical step in viral assembly and replication. The HIV-1 protease (PR) is translated as part of GagPol and is both necessary and sufficient for precursor processing. The PR is active only as a dimer; enzyme activation is initiated when the PR domains in two GagPol precursors dimerize. The precise mechanism by which the PR becomes activated and the subsequent initial steps in precursor processing are not well understood. However, it is clear that processing is initiated by the PR domain that is embedded within the precursor itself. We have examined the earliest events in precursor processing using an in vitro assay in which full-length GagPol is cleaved by its embedded PR. We demonstrate that the embedded, immature PR is as much as 10,000-fold less sensitive to inhibition by an active-site PR inhibitor than is the mature, free enzyme. Further, we find that different concentrations of the active-site inhibitor are required to inhibit the processing of different cleavage sites within GagPol. Finally, our results indicate that the first cleavages carried out by the activated PR within GagPol are intramolecular. Overall, our data support a model of virus assembly in which the first cleavages occur in GagPol upstream of the PR. These intramolecular cleavages produce an extended form of PR that completes the final processing steps accompanying the final stages of particle assembly by an intermolecular mechanism.


2014 ◽  
Vol 58 (7) ◽  
pp. 4086-4093 ◽  
Author(s):  
Angela Corona ◽  
Anna Schneider ◽  
Kristian Schweimer ◽  
Paul Rösch ◽  
Birgitta M. Wöhrl ◽  
...  

ABSTRACTRNase H plays an essential role in the replication of human immunodeficiency virus type 1 (HIV-1). Therefore, it is a promising target for drug development. However, the identification of HIV-1 RNase H inhibitors (RHIs) has been hampered by the open morphology of its active site, the limited number of available RNase H crystal structures in complex with inhibitors, and the fact that, due to the high concentrations of Mg2+needed for protein stability, HIV-1 RNase H is not suitable for nuclear magnetic resonance (NMR) inhibitor studies. We recently showed that the RNase H domains of HIV-1 and prototype foamy virus (PFV) reverse transcriptases (RTs) exhibit a high degree of structural similarity. Thus, we examined whether PFV RNase H can serve as an HIV-1 RNase H model for inhibitor interaction studies. Five HIV-1 RHIs inhibited PFV RNase H activity at low-micromolar concentrations similar to those of HIV-1 RNase H, suggesting pocket similarity of the RNase H domains. NMR titration experiments with the PFV RNase H domain and the RHI RDS1643 (6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester) were performed to determine its binding site. Based on these results and previous data,in silicodocking analysis showed a putative RDS1643 binding region that reaches into the PFV RNase H active site. Structural overlays were performed with HIV-1 and PFV RNase H to propose the RDS1643 binding site in HIV-1 RNase H. Our results suggest that this approach can be used to establish PFV RNase H as a model system for HIV-1 RNase H in order to identify putative inhibitor binding sites in HIV-1 RNase H.


Sign in / Sign up

Export Citation Format

Share Document