dntp binding
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 3)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Weijie Gu ◽  
Sergio Martinez ◽  
Abhimanyu K. Singh ◽  
Hoai Nguyen ◽  
Jef Rozenski ◽  
...  

2021 ◽  
Author(s):  
Kazutoshi Kasho ◽  
Gorazd Stojkovič ◽  
Cristina Velázquez-Ruiz ◽  
Maria Isabel Martínez-Jiménez ◽  
Mara Doimo ◽  
...  

Abstract Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.


Author(s):  
Kazutoshi Kasho ◽  
Gorazd Stojkovič ◽  
Cristina Velázquez-Ruiz ◽  
Maria Isabel Martínez-Jiménez ◽  
Timothée Laurent ◽  
...  

ABSTRACTReplication forks often stall at damaged DNA. Resumption of DNA synthesis can occur by replacement of the replicative DNA polymerase with specialized, error-prone translesion DNA polymerases (TLS), that have higher tolerance for damaged substrates. Several of these polymerases (Polλ, Polη and PrimPol) are stimulated in DNA synthesis through interaction with PolDIP2, however the mechanism of this PolDIP2-dependent stimulation is still unclear. Here we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol’s enhanced processivity. PolDIP2 increases PrimPol’s primer-template and dNTP binding affinity, which concomitantly enhances PrimPol’s nucleotide incorporation efficiency. This activity is dependent on a unique arginine cluster in PolDIP2 and could be essential for PrimPol to function in vivo, since the polymerase activity of PrimPol alone is very limited. This mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, could be common to all other PolDIP2-interacting TLS polymerases, i.e. Polλ, Polη, Polζ and REV1, and might be critical for their in vivo function of tolerating DNA lesions at physiological nucleotide concentrations.


2017 ◽  
Author(s):  
Omri Malik ◽  
Hadeel Khamis ◽  
Sergei Rudnizky ◽  
Ariel Kaplan

ABSTRACTRetroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Kalyan Das ◽  
Sergio E. Martinez ◽  
Eddy Arnold

ABSTRACT HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3′-endo and 3′-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.


2016 ◽  
Vol 60 (9) ◽  
pp. 5608-5611 ◽  
Author(s):  
Min Li ◽  
Andrea C. Mislak ◽  
Yram Foli ◽  
Esinam Agbosu ◽  
Vivek Bose ◽  
...  

ABSTRACTWe found a heterozygous C2857T mutation (R953C) in polymerase gamma (Pol-γ) in an HIV-infected patient with mitochondrial toxicity. The R953C Pol-γ mutant binding affinity for dCTP is 8-fold less than that of the wild type. The R953C mutant shows a 4-fold decrease in discrimination of analog nucleotides relative to the wild type. R953 is located on the “O-helix” that forms the substrate deoxynucleoside triphosphate (dNTP) binding site; the interactions of R953 with E1056 and Y986 may stabilize the O-helix and affect polymerase activity.


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1390 ◽  
Author(s):  
Akiyoshi Nakamura ◽  
Noriko Tamura ◽  
Yoshiaki Yasutake

Hepatitis B viruspolymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stabilityin vitrohas hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol andHuman immunodeficiency virus 1(HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space groupP321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Divya Nandakumar ◽  
Manjula Pandey ◽  
Smita S Patel

Leading strand DNA synthesis requires functional coupling between replicative helicase and DNA polymerase (DNAP) enzymes, but the structural and mechanistic basis of coupling is poorly understood. This study defines the precise positions of T7 helicase and T7 DNAP at the replication fork junction with single-base resolution to create a structural model that explains the mutual stimulation of activities. Our 2-aminopurine studies show that helicase and polymerase both participate in DNA melting, but each enzyme melts the junction base pair partially. When combined, the junction base pair is melted cooperatively provided the helicase is located one nucleotide ahead of the primer-end. The synergistic shift in equilibrium of junction base pair melting by combined enzymes explains the cooperativity, wherein helicase stimulates the polymerase by promoting dNTP binding (decreasing dNTP Km), polymerase stimulates the helicase by increasing the unwinding rate-constant (kcat), consequently the combined enzymes unwind DNA with kinetic parameters resembling enzymes translocating on single-stranded DNA.


2015 ◽  
Vol 112 (11) ◽  
pp. 3475-3480 ◽  
Author(s):  
Jan Balzarini ◽  
Kalyan Das ◽  
Jean A. Bernatchez ◽  
Sergio E. Martinez ◽  
Marianne Ngure ◽  
...  

Polymerases have a structurally highly conserved negatively charged amino acid motif that is strictly required for Mg2+ cation-dependent catalytic incorporation of (d)NTP nucleotides into nucleic acids. Based on these characteristics, a nucleoside monophosphonate scaffold, α-carboxy nucleoside phosphonate (α-CNP), was designed that is recognized by a variety of polymerases. Kinetic, biochemical, and crystallographic studies with HIV-1 reverse transcriptase revealed that α-CNPs mimic the dNTP binding through a carboxylate oxygen, two phosphonate oxygens, and base-pairing with the template. In particular, the carboxyl oxygen of the α-CNP acts as the potential equivalent of the α-phosphate oxygen of dNTPs and two oxygens of the phosphonate group of the α-CNP chelate Mg2+, mimicking the chelation by the β- and γ-phosphate oxygens of dNTPs. α-CNPs (i) do not require metabolic activation (phosphorylation), (ii) bind directly to the substrate-binding site, (iii) chelate one of the two active site Mg2+ ions, and (iv) reversibly inhibit the polymerase catalytic activity without being incorporated into nucleic acids. In addition, α-CNPs were also found to selectively interact with regulatory (i.e., allosteric) Mg2+-dNTP-binding sites of nucleos(t)ide-metabolizing enzymes susceptible to metabolic regulation. α-CNPs represent an entirely novel and broad technological platform for the development of specific substrate active- or regulatory-site inhibitors with therapeutic potential.


2013 ◽  
Vol 42 (4) ◽  
pp. 2555-2563 ◽  
Author(s):  
Alfonso Brenlla ◽  
Radoslaw P. Markiewicz ◽  
David Rueda ◽  
Louis J. Romano

Abstract Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.


Sign in / Sign up

Export Citation Format

Share Document