virus maturation
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 19)

H-INDEX

33
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2312
Author(s):  
Sébastien Lyonnais ◽  
S. Kashif Sadiq ◽  
Cristina Lorca-Oró ◽  
Laure Dufau ◽  
Sara Nieto-Marquez ◽  
...  

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1922
Author(s):  
Ying Wang ◽  
Chao Guo ◽  
Xing Wang ◽  
Lianmei Xu ◽  
Rui Li ◽  
...  

The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1843
Author(s):  
Connor A. P. Scott ◽  
Alberto A. Amarilla ◽  
Summa Bibby ◽  
Natalee D. Newton ◽  
Roy A. Hall ◽  
...  

The use of dengue virus (DENV) vaccines has been hindered by the complexities of antibody dependent enhancement (ADE). Current late-stage vaccine candidates utilize attenuated and chimeric DENVs that produce particles of varying maturities. Antibodies that are elicited by preferentially exposed epitopes on immature virions have been linked to increased ADE. We aimed to further understand the humoral immunity promoted by DENV particles of varying maturities in an AG129 mouse model using a chimeric insect specific vaccine candidate, bDENV-2. We immunized mice with mature, partially mature, and immature bDENV-2 and found that immunization with partially mature bDENV-2 produced more robust and cross-neutralizing immune responses than immunization with immature or mature bDENV-2. Upon challenge with mouse adapted DENV-2 (D220), we observed 80% protection for mature bDENV-2 vaccinated mice and 100% for immature and partially mature vaccinated mice, suggesting that protection to homotypic challenge is not dependent on maturation. Finally, we found reduced in vitro ADE at subneutralising serum concentrations for mice immunized with mature bDENV-2. These results suggest that both immature and mature DENV particles play a role in homotypic protection; however, the increased risk of in vitro ADE from immature particles indicates potential safety benefits from mature DENV-based vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikhil Samarth ◽  
Ritika Kabra ◽  
Shailza Singh

AbstractCoronavirus disease 2019 (Covid-19), caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), has come to the fore in Wuhan, China in December 2019 and has been spreading expeditiously all over the world due to its high transmissibility and pathogenicity. From the outbreak of COVID-19, many efforts are being made to find a way to fight this pandemic. More than 300 clinical trials are ongoing to investigate the potential therapeutic option for preventing/treating COVID-19. Considering the critical role of SARS-CoV-2 main protease (Mpro) in pathogenesis being primarily involved in polyprotein processing and virus maturation, it makes SARS-CoV-2 main protease (Mpro) as an attractive and promising antiviral target. Thus, in our study, we focused on SARS-CoV-2 main protease (Mpro), used machine learning algorithms and virtually screened small derivatives of anthraquinolone and quinolizine from PubChem that may act as potential inhibitor. Prioritisation of cavity atoms obtained through pharmacophore mapping and other physicochemical descriptors of the derivatives helped mapped important chemical features for ligand binding interaction and also for synergistic studies with molecular docking. Subsequently, these studies outcome were supported through simulation trajectories that further proved anthraquinolone and quinolizine derivatives as potential small molecules to be tested experimentally in treating COVID-19 patients.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 893
Author(s):  
Watee Seesuay ◽  
Siratcha Phanthong ◽  
Jaslan Densumite ◽  
Kodchakorn Mahasongkram ◽  
Nitat Sookrung ◽  
...  

HIV-1 progeny are released from infected cells as immature particles that are unable to infect new cells. Gag-Pol polyprotein dimerization via the reverse transcriptase connection domain (RTCDs) is pivotal for proper activation of the virus protease (PR protein) in an early event of the progeny virus maturation process. Thus, the RTCD is a potential therapeutic target for a broadly effective anti-HIV agent through impediment of virus maturation. In this study, human single-chain antibodies (HuscFvs) that bound to HIV-1 RTCD were generated using phage display technology. Computerized simulation guided the selection of the transformed Escherichia coli-derived HuscFvs that bound to the RTCD dimer interface. The selected HuscFvs were linked molecularly to human-derived-cell-penetrating peptide (CPP) to make them cell-penetrable (i.e., become transbodies). The CPP-HuscFvs/transbodies produced by a selected transformed E. coli clone were tested for anti-HIV-1 activity. CPP-HuscFvs of transformed E. coli clone 11 (CPP-HuscFv11) that presumptively bound at the RTCD dimer interface effectively reduced reverse transcriptase activity in the newly released virus progeny. Infectiousness of the progeny viruses obtained from CPP-HuscFv11-treated cells were reduced by a similar magnitude to those obtained from protease/reverse transcriptase inhibitor-treated cells, indicating anti-HIV-1 activity of the transbodies. The CPP-HuscFv11/transbodies to HIV-1 RTCD could be an alternative, anti-retroviral agent for long-term HIV-1 treatment.


2021 ◽  
Author(s):  
Joe Holley ◽  
Rebecca P. Sumner ◽  
Sian Lant ◽  
Paolo Ribeca ◽  
David Ulaeto ◽  
...  

Vaccinia virus produces two types of virions known as single-membraned intracellular mature virus (MV) and double-membraned extracellular enveloped virus (EV). EV production peaks earlier when initial MV are further wrapped and secreted to spread infection within the host. However, late during infection MV accumulate intracellularly and become important for host-to-host transmission. The process that regulates this switch remains elusive and is thought to be influenced by host factors. Here we examined the hypothesis that EV and MV production are regulated by the virus through expression of F13 and the MV-specific protein A26. By switching the promoters and altering the expression kinetics of F13 and A26, we demonstrate that A26 expression downregulates EV production and plaque size, thus limiting viral spread. This process correlates with A26 association with the MV surface protein A27 and exclusion of F13, thus reducing EV titres. Thus, MV maturation is controlled by the abundance of the viral A26 protein, independently of other factors, and is rate-limiting for EV production. The A26 gene is conserved within vertebrate poxviruses, but strikingly lost in poxviruses known to be transmitted exclusively by biting arthropods. A26-mediated virus maturation thus has the appearance to be an ancient evolutionary adaptation to enhance transmission of poxviruses that has subsequently been lost from vector-adapted species, for which it may serve as a genetic signature. The existence of virus-regulated mechanisms to produce virions adapted to fulfil different functions represents a novel level of complexity in mammalian viruses with major impact on evolution, adaptation and transmission. IMPORTANCE Chordopoxviruses are mammalian viruses that uniquely produce a first type of virion adapted to spread within the host and a second type that enhances transmission between hosts, which can take place by multiple ways including direct contact, respiratory droplets, oral/fecal routes, or via vectors. Both virion types are important to balance intra-host dissemination and inter-host transmission, so virus maturation pathways must be tightly controlled. Here we provide evidence that the abundance and kinetics of expression of the viral protein A26 regulates this process by preventing formation of the first form and shifting maturation towards the second form. A26 is expressed late after the initial wave of progeny virions is produced, so sufficient viral dissemination is ensured, and provides virions with enhanced environmental stability. Conservation of A26 in all vertebrate poxviruses but those transmitted exclusively via biting arthropods reveals the importance of A26-controlled virus maturation for transmission routes involving environmental exposure.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Roger Castells-Graells ◽  
Jonas R. S. Ribeiro ◽  
Tatiana Domitrovic ◽  
Emma L. Hesketh ◽  
Charlotte A. Scarff ◽  
...  

AbstractMany virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Luiza Mendonça ◽  
Dapeng Sun ◽  
Jiying Ning ◽  
Jiwei Liu ◽  
Abhay Kotecha ◽  
...  

AbstractGag is the HIV structural precursor protein which is cleaved by viral protease to produce mature infectious viruses. Gag is a polyprotein composed of MA (matrix), CA (capsid), SP1, NC (nucleocapsid), SP2 and p6 domains. SP1, together with the last eight residues of CA, have been hypothesized to form a six-helix bundle responsible for the higher-order multimerization of Gag necessary for HIV particle assembly. However, the structure of the complete six-helix bundle has been elusive. Here, we determined the structures of both Gag in vitro assemblies and Gag viral-like particles (VLPs) to 4.2 Å and 4.5 Å resolutions using cryo-electron tomography and subtomogram averaging by emClarity. A single amino acid mutation (T8I) in SP1 stabilizes the six-helix bundle, allowing to discern the entire CA-SP1 helix connecting to the NC domain. These structures provide a blueprint for future development of small molecule inhibitors that can lock SP1 in a stable helical conformation, interfere with virus maturation, and thus block HIV-1 infection.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 491
Author(s):  
Alan Rein

I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that could not have been inferred or anticipated from straightforward sequence information. Building on the Oroszlan lab results, my colleagues and I demonstrated that the zinc fingers in nucleocapsid proteins play a crucial role in genomic RNA encapsidation; that the N-terminal myristylation of the Gag proteins of many retroviruses is important for their association with the plasma membrane before particle assembly is completed; and that gammaretroviruses initially synthesize their Env protein as an inactive precursor and then truncate the cytoplasmic tail of the transmembrane protein, activating Env fusogenicity, during virus maturation. We also elucidated several aspects of the mechanism of translational suppression in pol gene expression in gammaretroviruses; amazingly, this is a fundamentally different mechanism of suppression from that in most other retroviral genera.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe4716
Author(s):  
Donna L. Mallery ◽  
Alex B. Kleinpeter ◽  
Nadine Renner ◽  
K. M. Rifat Faysal ◽  
Mariia Novikova ◽  
...  

HIV virion assembly begins with the construction of an immature lattice consisting of Gag hexamers. Upon virion release, protease-mediated Gag cleavage leads to a maturation event in which the immature lattice disassembles and the mature capsid assembles. The cellular metabolite inositiol hexakisphosphate (IP6) and maturation inhibitors (MIs) both bind and stabilize immature Gag hexamers, but whereas IP6 promotes virus maturation, MIs inhibit it. Here we show that HIV is evolutionarily constrained to maintain an immature lattice stability that ensures IP6 packaging without preventing maturation. Replication-deficient mutant viruses with reduced IP6 recruitment display increased infectivity upon treatment with the MI PF46396 (PF96) or the acquisition of second-site compensatory mutations. Both PF96 and second-site mutations stabilise the immature lattice and restore IP6 incorporation, suggesting that immature lattice stability and IP6 binding are interdependent. This IP6 dependence suggests that modifying MIs to compete with IP6 for Gag hexamer binding could substantially improve MI antiviral potency.


Sign in / Sign up

Export Citation Format

Share Document