In‐Silico Screening and Microsecond Molecular Dynamics Simulations to Identify Single Point Mutations That Destabilize β‐hexosaminidase A ( HexA ) Causing Tay‐Sachs Disease

Author(s):  
Ahmad Almanasra ◽  
Brandon Havranek ◽  
Shahidul M. Islam
2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


Sign in / Sign up

Export Citation Format

Share Document