Fluctuation model for a rough metal/semiconductor interface

2003 ◽  
Vol 0 (3) ◽  
pp. 933-938 ◽  
Author(s):  
N. L. Dmitruk ◽  
O. Yu. Borkovskaya ◽  
Zs. J. Horváth ◽  
I. B. Mamontova ◽  
S. V. Mamykin
Methodology ◽  
2006 ◽  
Vol 2 (4) ◽  
pp. 142-148 ◽  
Author(s):  
Pere J. Ferrando

In the IRT person-fluctuation model, the individual trait levels fluctuate within a single test administration whereas the items have fixed locations. This article studies the relations between the person and item parameters of this model and two central properties of item and test scores: temporal stability and external validity. For temporal stability, formulas are derived for predicting and interpreting item response changes in a test-retest situation on the basis of the individual fluctuations. As for validity, formulas are derived for obtaining disattenuated estimates and for predicting changes in validity in groups with different levels of fluctuation. These latter formulas are related to previous research in the person-fit domain. The results obtained and the relations discussed are illustrated with an empirical example.


1984 ◽  
Vol 45 (C5) ◽  
pp. C5-275-C5-284
Author(s):  
A. D. Boardman ◽  
A. K. Irving

Author(s):  
K. Ando ◽  
E. Saitoh

This chapter introduces the concept of incoherent spin current. A diffusive spin current can be driven by spatial inhomogeneous spin density. Such spin flow is formulated using the spin diffusion equation with spin-dependent electrochemical potential. The chapter also proposes a solution to the problem known as the conductivity mismatch problem of spin injection into a semiconductor. A way to overcome the problem is by using a ferromagnetic semiconductor as a spin source; another is to insert a spin-dependent interface resistance at a metal–semiconductor interface.


Sign in / Sign up

Export Citation Format

Share Document