surface modes
Recently Published Documents


TOTAL DOCUMENTS

578
(FIVE YEARS 55)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. R. Shelley ◽  
J. G. Beadle ◽  
A. P. Hibbins ◽  
J. R. Sambles

AbstractThe acoustic surface modes supported by a partly covered periodic meander groove structure formed in an assumed perfectly rigid plate are investigated. This allows one to create a slower acoustic surface wave than can be achieved with the same uncovered meander structure. By changing the size of the uncovered section the phase and group speeds can be tuned. When the uncovered section of the meander structure is centred along the grooves then the distance along the grooves between neighbouring holes is the same on both sides of the structure so no band gap is observed at the first Brillouin zone boundary due to glide symmetry. This then gives quite linear dispersion. As the uncovered section’s position is moved away from the centre of the meander structure a band gap opens at the Brillouin zone boundary.


2021 ◽  
Vol 508 (2) ◽  
pp. 2123-2133
Author(s):  
Pinaki Roy ◽  
Aru Beri ◽  
Sudip Bhattacharyya

ABSTRACT We report results obtained from the study of 12 thermonuclear X-ray bursts in six AstroSat observations of a neutron star X-ray binary and well-known X-ray burster, 4U 1636 − 536. Burst oscillations (BOs) at ∼ 581 Hz are observed with 4–5σ confidence in three of these X-ray bursts. The rising phase BOs show a decreasing trend of the fractional rms amplitude at 3σ confidence, by far the strongest evidence of thermonuclear flame spreading observed with AstroSat. During the initial 0.25 s of the rise a very high value ($34.0\pm 6.7{{{\ \rm per\ cent}}}$) is observed. The concave shape of the fractional amplitude profile provides a strong evidence of latitude-dependent flame speeds, possibly due to the effects of the Coriolis force. We observe decay phase oscillations with amplitudes comparable to that observed during the rising phase, plausibly due to the combined effect of both surface modes, as well as the cooling wake. The Doppler shifts due to the rapid rotation of the neutron star might cause hard pulses to precede the soft pulses, resulting in a soft lag. The distance to the source estimated using the photospheric radius expansion bursts is consistent with the known value of ∼6 kpc.


AIAA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Shishir Damani ◽  
Nathan Alexander ◽  
William J. Devenport ◽  
Benjamin P. Pearce ◽  
Samuel R. Shelley ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Zongshang Si ◽  
Chongguang Pang ◽  
Zhiliang Liu ◽  
Shihong Wang

Abstract In areas with rough bathymetry, the vertical structure of ocean eddies can be decomposed into “surface modes,” which are surface intensified, and exhibit a velocity of nearly zero at the bottom. Furthermore, ocean surface modes are ubiquitous. Atlases of the first surface mode (SM1) deformation radius were computed on a global 0.25°×0.25° grid using WOA2013 and the data from Generalized Digital Environment Model (GDEM). Monthly and seasonal changes were also analyzed. The annual average SM1 deformation radius was approximately 1.5 times larger than the Rossby radius of deformation; the main difference occurred in areas with rough bathymetry, including continental margins and mid-ocean ridges. The seasonal and monthly average SM1 deformation radius shows an evident annual cycle.


Sign in / Sign up

Export Citation Format

Share Document