Large-eddy simulation of vortex streets and pollutant dispersion behind high-rise buildings

2017 ◽  
Vol 143 (708) ◽  
pp. 2714-2726 ◽  
Author(s):  
Beom-Soon Han ◽  
Seung-Bu Park ◽  
Jong-Jin Baik ◽  
Junho Park ◽  
Kyung-Hwan Kwak
Author(s):  
T. Z. Du ◽  
Chun-Ho Liu ◽  
Y. B. Zhao

In urban areas, pollutants are emitted from vehicles then disperse from the ground level to the downstream urban canopy layer (UCL) under the effect of the prevailing wind. For a hypothetical urban area in the form of idealized street canyons, the building-height-to-street-width (aspect) ratio (AR) changes the ground roughness which in turn leads to different turbulent airflow features. Turbulence is considered an important factor for the removal of reactive pollutants by means of dispersion/dilution and chemical reactions. Three values of aspect ratio, covering most flow scenarios of urban street canyons, are employed in this study. The pollutant dispersion and reaction are calculated using large-eddy simulation (LES) with chemical reactions. Turbulence timescale and reaction timescale at every single point of the UCL domain are calculated to examine the pollutant removal. The characteristic mechanism of reactive pollutant dispersion over street canyons will be reported in the conference.


2019 ◽  
Vol 12 (5) ◽  
pp. 921-941 ◽  
Author(s):  
Farzad Bazdidi-Tehrani ◽  
Shahin Masoumi-Verki ◽  
Payam Gholamalipour ◽  
Mohsen Kiamansouri

2014 ◽  
Vol 695 ◽  
pp. 562-566
Author(s):  
Afiq Witri Muhammad Yazid ◽  
Nor Azwadi Che Sidik ◽  
Salim Mohamed Salim ◽  
Shuhaimi Mansor

This paper reports on the model sensitivity analysis of a commercial computational fluid dynamics program, ANSYS FLUENT v14. The purpose of the analysis was to determine the appropriate modeling settings for numerical model of the case study. A full scale of a simplified urban street canyon was modelled and the turbulent flow was calculated using Large Eddy Simulation (LES) techniques. The model sensitivity tests involved are mesh sensitivity, statistically steady state and sampling. Adequate numbers of cells, period time to achieve statistically steady state (SST) and sampling time to simulate wind flow and pollutant dispersion in street canyon were determined through systematic tests.


Sign in / Sign up

Export Citation Format

Share Document