Total ozone and perturbations in the middle stratosphere

1963 ◽  
Vol 89 (379) ◽  
pp. 157-159
Author(s):  
B. W. Boville ◽  
F. K. Hare
2005 ◽  
Vol 5 (6) ◽  
pp. 12617-12639
Author(s):  
N. Semane ◽  
H. Bencherif ◽  
B. Morel ◽  
A. Hauchecorne ◽  
R. D. Diab

Abstract. A prominent ozone minimum of less than 240 Dobson Units (DU) was observed over Irene (25.5° S, 28.1° E) by the Total Ozone Mapping Spectrometer (TOMS) during May 2002 with extremely low ozone value of less than 219 DU recorded on 12 May, as compared to a climatological mean of 249 DU for May between 1999 and 2005. In this study, the vertical structure of this ozone minimum is examined using ozonesonde measurements performed over Irene on 15 May 2002, when the total ozone (as given by TOMS) was about 226 DU. Indeed, it is found that the ozone minimum is of Antarctic polar origin with a low-ozone layer in the middle stratosphere above 625 K and of tropical origin with low-ozone layer between 400-K and 450-K isentropic levels in the lower stratosphere. The upper and lower depleted parts of the ozonesonde profile for 15 May, are respectively attributed to equatorward and poleward transport of low-ozone air toward the subtropics. The tropical air moving over Irene and the polar one passing over the same area associated with enhanced planetary-wave activity are simulated successfully using a high-resolution advection contour model (MIMOSA) of Potential Vorticity. Indeed, in mid-May 2002, MIMOSA maps show a polar vortex filament in the middle stratosphere above the 625-K isentropic level and they show also tropical air-masses moving southward (over Irene) in the lower stratosphere between 400-K and 450-K isentropic levels. The winter stratospheric wave driving and its associated localized isentropic mixing leading to the ozone minimum are investigated by means of two diagnostic tools: the Eliassen-Palm flux and the effective diffusivity computed from the European Center for Medium-range Weather Forecasts (ECMWF) fields. The unusual distribution of ozone over Irene during May 2002 in the middle stratosphere is closely connected to the anomalously pre-conditioned structure of the polar vortex at that time of the year. Indeed, the perturbed vortex was typically predisposed for easy erosion by dynamical transport processes, which have been driven by strong planetary wave activity and have eventually resulted in a very large latitudinal advection of polar air masses towards the subtropics. The exceptional presence of polar vortex air over the subtropics during May 2002 can be considered as the first sign of the particular polar vortex disturbances, which after being well reinforced, contributed to the unprecedented behavior of the Antarctic spring ozone hole observed during September 2002.


2006 ◽  
Vol 6 (7) ◽  
pp. 1927-1936 ◽  
Author(s):  
N. Semane ◽  
H. Bencherif ◽  
B. Morel ◽  
A. Hauchecorne ◽  
R. D. Diab

Abstract. A prominent ozone minimum of less than 240 Dobson Units (DU) was observed over Irene (25.5° S, 28.1° E), a subtropical site in the Southern Hemisphere, by the Total Ozone Mapping Spectrometer (TOMS) during May 2002 with an extremely low ozone value of less than 219 DU recorded on 12 May, as compared to the climatological mean value of 249 DU for May between 1999 and 2005. In this study, the vertical structure of this ozone minimum is examined using ozonesonde measurements performed over Irene on 15 May 2002, when the total ozone (as given by TOMS) was about 226 DU. It is shown that this ozone minimum is of Antarctic polar origin with a low-ozone layer in the middle stratosphere above 625 K (where the climatological ozone gradient points equatorward), and is of tropical origin with a low-ozone layer in the lower stratosphere between the 400-K and 450-K isentropic levels (where the climatological ozone gradient is reversed). The upper and lower depleted parts of the ozonesonde profile for 15 May are then respectively attributed to equatorward and poleward transport of low-ozone air toward the subtropics in the Southern Hemisphere. The tropical air moving over Irene and the polar one passing over the same area associated with enhanced planetary-wave activity are successfully simulated using the high-resolution advection contour model of Ertel's potential vorticity MIMOSA. The unusual distribution of ozone over Irene during May 2002 in the middle stratosphere is connected to the anomalously pre-conditioned structure of the polar vortex at that time of the year. The winter stratospheric wave driving leading to the ozone minimum is investigated by means of the Eliassen-Palm flux computed from the European Center for Medium-range Weather Forecasts (ECMWF) ERA40 re-analyses.


2005 ◽  
Vol 11 (5-6) ◽  
pp. 5-11
Author(s):  
A.V. Grytsai ◽  
◽  
O.M. Evtushevsky ◽  
G.P. Milinevsky ◽  
Z.I. Grytsai ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
pp. 41-47 ◽  
Author(s):  
V.Y. Mogylchak ◽  
◽  
G.P. Milinevsky ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document