middle stratosphere
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 29)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Chunming Huang ◽  
Lingyun Yang ◽  
Shaodong Zhang ◽  
Kaiming Huang ◽  
Yun Gong ◽  
...  

Abstract Although the characteristics of the traveling 10-day waves (10DWs) above the middle stratosphere have been well explored, little research has been performed on the counterpart in the troposphere and lower stratosphere (TLS). In the present study, we use radiosonde observations and MERRA-2 data in 2020 to characterize traveling 10DWs in mid-latitudes in the TLS. Single-site observations in both hemispheres show that strong 10DW activities are always accompanied by strong eastward jets (10-13 km). MERRA-2 data indicates that in the troposphere the eastward-propagating modes with larger wavenumbers, i.e., E3, E4, E5 and E6 are dominant. While in the lower stratosphere the eastward- and westward-propagating modes with small zonal wavenumbers e.g., 1 and 2, are dominant. Further research on E3, E4, E5 and E6 modes in the troposphere of both hemispheres shows that all the wave activities are positively correlated to the background zonal wind. The refractive index squared reveal that a strong eastward jet is suitable for these four modes to propagate. However, just above the jet, the eastward wind decreases with altitude, and a thick evanescence region emerges above 15 km. E3, E4, E5 and E6 10DWs cannot propagate upward across the tropopause; as such this can explain why these four modes are weak or even indiscernible in the stratosphere and above. In the troposphere, E5 10DW at 32°S is the most dominant mode in 2020. A case study of the anomalously strong E5 10DW activity on May 12, 2020 indicates that the wave amplification resulted from the upward and equatorward transmission of wave energy flows. Moreover, the tropopause and equatorial region can prevent the propagations of wave energy flows of E5 10DW.


2022 ◽  
Author(s):  
Axel Gabriel

Abstract. The increase in amplitudes of upward propagating gravity waves (GWs) with height due to decreasing density is usually described by exponential growth; however, recent measurements detected a much stronger increase in gravity wave potential energy density (GWPED) during daylight than night-time (increase by a factor of about 4 to 8 between middle stratosphere and upper mesosphere), which is not well understood up to now. This paper suggests that ozone-gravity wave interaction in the upper stratosphere/lower mesosphere is largely responsible for this phenomenon. The coupling between ozone-photochemistry and temperature is particularly strong in the upper stratosphere where the time-mean ozone mixing ratio is decreasing with height; therefore, an initial uplift of an air parcel must lead to a local increase in ozone and in the heating rate compared to the environment, and, hence, to an amplification of the initial uplift. Standard solutions of upward propagating GWs with linear ozone-temperature coupling are formulated suggesting local amplitude amplifications during daylight of 5 to 15 % for low-frequency GWs (periods ≥4 hours), as a function of the intrinsic frequency which decreases if ozone-temperature coupling is included. Subsequently, for horizontal wavelengths larger than 500 km and vertical wavelengths smaller than 5 km, the cumulative amplification during the upward level-by-level propagation leads to much stronger amplitudes in the GW perturbations (factor of about 1.5 to 3) and in the GWPED (factor of about 3 to 9) at upper mesospheric altitudes. The results open a new viewpoint for improving general circulation models with resolved or parameterized GWs.


2021 ◽  
Vol 21 (20) ◽  
pp. 15375-15407
Author(s):  
Meike K. Rotermund ◽  
Vera Bense ◽  
Martyn P. Chipperfield ◽  
Andreas Engel ◽  
Jens-Uwe Grooß ◽  
...  

Abstract. We report on measurements of total bromine (Brtot) in the upper troposphere and lower stratosphere taken during 15 flights with the German High Altitude and LOng range research aircraft (HALO). The research campaign WISE (Wave-driven ISentropic Exchange) included regions over the North Atlantic, Norwegian Sea, and northwestern Europe in fall 2017. Brtot is calculated from measured total organic bromine (Brorg) added to inorganic bromine (Bryinorg), evaluated from measured BrO and photochemical modeling. Combining these data, the weighted mean [Brtot] is 19.2±1.2 ppt in the northern hemispheric lower stratosphere (LS), in agreement with expectations for Brtot in the middle stratosphere (Engel and Rigby et al., 2018). The data reflect the expected variability in Brtot in the LS due to variable influx of shorter lived brominated source and product gases from different regions of entry. A closer look into Brorg and Bryinorg, as well as simultaneously measured transport tracers (CO and N2O) and an air mass lag time tracer (SF6), suggests that bromine-rich air masses persistently protruded into the lowermost stratosphere (LMS) in boreal summer, creating a high bromine region (HBrR). A subsection, HBrR∗, has a weighted average of [Brtot] = 20.9±0.8 ppt. The most probable source region is air recently transported from the tropical upper troposphere and tropopause layer (UT/TTL) with a weighted mean of [Brtot] = 21.6±0.7 ppt. CLaMS Lagrangian transport modeling shows that the HBrR air mass consists of 51.2 % from the tropical troposphere, 27.1 % from the stratospheric background, and 6.4 % from the midlatitude troposphere (as well as contributions from other domains). The majority of the surface air reaching the HBrR is from the Asian monsoon and its adjacent tropical regions, which greatly influences trace gas transport into the LMS in boreal summer and fall. Tropical cyclones from Central America in addition to air associated with the Asian monsoon region contribute to the elevated Brtot observed in the UT/TTL. TOMCAT global 3-D model simulations of a concurrent increase of Brtot show an associated O3 change of -2.6±0.7 % in the LS and -3.1±0.7 % near the tropopause. Our study of varying Brtot in the LS also emphasizes the need for more extensive monitoring of stratospheric Brtot globally and seasonally to fully understand its impact on LMS O3 and its radiative forcing of climate, as well as in aged air in the middle stratosphere to elucidate the stratospheric trend in bromine.


2021 ◽  
pp. 1-43
Author(s):  
Aaron Match ◽  
Stephan Fueglistaler

AbstractGlobal warming projections of dynamics are less robust than projections of thermodynamics. However, robust aspects of the thermodynamics can be used to constrain some dynamical aspects. This paper argues that tropospheric expansion under global warming (a thermodynamical process) explains changes in the amplitude of the Quasi-Biennial Oscillation (QBO) in the lower and middle stratosphere (a dynamical process). A theoretical scaling for tropospheric expansion of approximately 6 hPa K−1 is derived, which agrees well with global climate model (GCM) experiments. Using this theoretical scaling, the response of QBO amplitude to global warming is predicted by shifting the climatological QBO amplitude profile upwards by 6 hPa per Kelvin of global warming. In global warming simulations, QBO amplitude in the lower- to mid-stratosphere shifts upwards as predicted by tropospheric expansion. Applied to observations, the tropospheric expansion framework suggests a historical weakening of QBO amplitude at 70 hPa of 3% decade−1 from 1953-2020. This expected weakening trend is half of the 6% decade−1 from 1953-2012 detected and attributed to global warming in a recent study. The previously reported trend was reinforced by record low QBO amplitudes during the mid-2000s, from which the QBO has since recovered. Given the modest weakening expected on physical grounds, past decadal modulations of QBO amplitude are reinterpreted as a hitherto unrecognized source of internal variability. This large internal variability dominates over the global warming signal, such that despite 65 years of observations, there is not yet a statistically significant weakening trend.


2021 ◽  
Author(s):  
Patrick E. Sheese ◽  
Kaley A. Walker ◽  
Chris D. Boone ◽  
Adam E. Bourassa ◽  
Doug A. Degenstein ◽  
...  

Abstract. For the past 17 years, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the Canadian SCISAT satellite has been measuring profiles of atmospheric ozone. The latest two operational versions of the level 2 ozone data are versions 3.6 and 4.1. This technical note characterizes how both products compare with correlative data from other limb-sounding satellite instruments, namely MAESTRO, MLS, OSIRIS, SABER, and SMR. In general, v3.6, with respect to the other instruments, exhibits a smaller bias (which is on the order of ~3 %) in the middle stratosphere than v4.1 (~2–9 %), however the bias exhibited in the v4.1 data tends to be more stable, i.e. not changing significantly over time in any altitude region. In the lower stratosphere, v3.6 has a positive bias of about 3–5 % that is stable to within ±1 % dec−1, and v4.1 has a bias on the order of −1 to +5 % and is also stable to within ±1 % dec−1. In the middle stratosphere, v3.6 has a positive bias of ~3 % with a significant negative drift on the order of 0.5–2.5 % dec−1, and v4.1 has a positive bias of 2–9 % that is stable to within ±0.5 % dec−1. However, the v4.1 bias in the middle stratosphere is reduced to 0–5 % after being corrected for field-of-view modelling errors. In the upper stratosphere, v3.6 has a positive bias that increases with altitude up to ~16 % and a significant negative drift on the order of 2–3 % dec−1, and v4.1 has a positive bias that increases with altitude up to ~15 % and is stable to within ±1 % dec−1.


2021 ◽  
Author(s):  
Daniel J. Ruiz ◽  
Michael J. Prather

Abstract. Stratosphere-troposphere exchange (STE) is an important source of tropospheric ozone, affecting all of atmospheric chemistry, climate, and air quality. Observations and the theory of tracer correlations provide only coarse (±20 %) global-mean constraints. For fluxes resolved by latitude and month we rely on global chemistry-transport models (CTMs), and unfortunately, these results diverge greatly. Overall, we lack guidance from model-measurement metrics that inform us about processes and patterns related to the STE flux of ozone. In this work, we use modeled tracers (N2O, CFCl3) whose distributions and budgets can be constrained by satellite and surface observations, allowing us to follow stratospheric signals across the tropopause. The satellite derived photochemical loss of N2O on annual and quasi-biennial cycles can be matched by the models. The STE flux of N2O-depleted air in our CTM drives surface variability that closely matches observed fluctuations on both annual and quasi-biennial cycles, confirming the modeled flux. The observed tracer correlations between N2O and O3 in the lowermost stratosphere provide a seasonal, hemispheric scaling of the N2O flux to that of O3. For N2O and CFCl3, we model greater southern hemispheric STE fluxes, a result supported by some metrics, but counter to prevailing theory of wave-driven stratospheric circulation. The STE flux of O3, however, is predominantly northern hemispheric, but observational constraints show that this is only caused by the Antarctic ozone hole. Here we show that metrics founded on observations can better constrain the STE O3 flux which will help guide future model assessments.


2021 ◽  
Author(s):  
Bilal Benmahi ◽  
Thibault Cavalié ◽  
Thomas K. Greathouse ◽  
Vincent Hue ◽  
Rohini Giles ◽  
...  

<p>Since 30 years, an equatorial oscillation of the temperature structure with a quasi-period of 4 years has been discovered in the atmosphere of Jupiter (Orton et al. 1991, Leovy et al. 1991). This phenomenon results in a complex vertical and horizontal structure of prograde and retrograde jets. However, the wind structure of the stratosphere in the equatorial zone of Jupiter has not been measured directly. It has only been inferred in the tropical region from the thermal wind balance using temperatures measured in the jovian stratosphere and the cloud-top wind speeds measured as a initial condition (e.g. Flasar et al. 2004). But temperatures are not constrained between the upper troposphere and the middle stratosphere from observations, limiting thus the accuracy of the thermal wind balance.</p> <p>In this study, we derive self-consistently for the first time the structure of the tropical winds by utilizing wind and temperature observations all performed in the stratosphere. The wind speeds were obtained by Cavalié et al. (2021) at 1 mbar in Jupiter's stratosphere in both the equatorial and tropical regions in March 2017 with ALMA. The stratospheric thermal field was measured a few days before from the equator to the mid-latitudes with Gemini/TEXES (Giles et al. 2020). For the derivation of the wind, we use both the thermal wind equation (Pedlosky 1979) and the equatorial thermal wind equation (Marcus et al. 2019). In this paper, we will present and discuss our results.</p>


2021 ◽  
Vol 67 (2) ◽  
pp. 134-146
Author(s):  
V. V. Zuev ◽  
E. S. Savelieva ◽  
A. V. Pavlinsky

The Arctic polar vortex is often affected by wave activity during its life cycle. The planetary Rossby waves propagating from the troposphere to the stratosphere occasionally lead to the displacement or splitting of the polar vortex, accompanied by sudden stratospheric warming (SSW). In January 2009, one of the largest SSWs was observed in the Arctic. In this work, the dynamics of the polar vortex during the 2009 SSW is considered using a new method that allows one to estimate the vortex area, the wind speed at the vortex edge, the mean temperature and ozone mass mixing ratio inside the vortex, based on the fact that the Arctic vortex edge at the 50 and 10 hPa pressure levels is determined by the geopotential values, respectively, 19.5. 104 and 29.5. 104 m2 /s2 , using the ERA5 reanalysis data. The application of this method is justified for the Arctic polar vortex, which is characterized by significant variability, especially during the period of its splitting. The splitting of the polar vortex in 2009 was observed on January 24 and 28, respectively, in the middle and lower stratosphere. About a week after the splitting, the vortices became closer in characteristics to small cyclones, which completely collapsed within 1–3 weeks. The influence of planetary wave activity on the polar vortex does not always lead to its breakdown. Short-term splitting of the polar vortex is sometimes observed for several days after which the polar vortex strengthens again and PSCs form inside the vortex. Such a recovery of the polar vortex is most likely to occur in the winter. Based on the analysis of the dynamics of the Arctic polar vortex for 1979–2020 and using the example of the 2009 SSW, we showed that when the vortex area decreases to less than 10 million km2 and the mean wind speed at the vortex edge decreases below 30 and 45 m/s, respectively, in the lower and middle stratosphere, the polar vortex becomes a small cyclone (with significantly higher temperatures within it), which usually collapses within 3 weeks.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Sarah Derouin

How does a large volcanic cloud get into the stratosphere? Scientists model how volcanic debris injected into the lower stratosphere can be lofted high into the middle stratosphere.


Sign in / Sign up

Export Citation Format

Share Document