scholarly journals The GEOS ozone data assimilation system: Specification of error statistics

2001 ◽  
Vol 127 (573) ◽  
pp. 1069-1094 ◽  
Author(s):  
Ivanka Štajner ◽  
Lars Peter Riishøjgaard ◽  
Richard B. Rood
2014 ◽  
Vol 142 (10) ◽  
pp. 3586-3613 ◽  
Author(s):  
A. Routray ◽  
S. C. Kar ◽  
P. Mali ◽  
K. Sowjanya

Abstract In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.


2000 ◽  
Vol 25 (5) ◽  
pp. 1063-1072 ◽  
Author(s):  
L.P. Riishøjgaard ◽  
I. Štajner ◽  
G.-P. Lou

2014 ◽  
Vol 53 (10) ◽  
pp. 2287-2309 ◽  
Author(s):  
Hongli Wang ◽  
Xiang-Yu Huang ◽  
Juanzhen Sun ◽  
Dongmei Xu ◽  
Man Zhang ◽  
...  

AbstractBackground error modeling plays a key role in a variational data assimilation system. The National Meteorological Center (NMC) method has been widely used in variational data assimilation systems to generate a forecast error ensemble from which the climatological background error covariance can be modeled. In this paper, the characteristics of the background error modeling via the NMC method are investigated for the variational data assimilation system of the Weather Research and Forecasting (WRF-Var) Model. The background error statistics are extracted from short-term 3-km-resolution forecasts in June, July, and August 2012 over a limited-area domain. It is found 1) that background error variances vary from month to month and also have a feature of diurnal variations in the low-level atmosphere and 2) that u- and υ-wind variances are underestimated and their autocorrelation length scales are overestimated when the default control variable option in WRF-Var is used. A new approach of control variable transform (CVT) is proposed to model the background error statistics based on the NMC method. The new approach is capable of extracting inhomogeneous and anisotropic climatological information from the forecast error ensemble obtained via the NMC method. Single observation assimilation experiments show that the proposed method not only has the merit of incorporating geographically dependent covariance information, but also is able to produce a multivariate analysis. The results from the data assimilaton and forecast study of a real convective case show that the use of the new CVT improves synoptic weather system and precipitation forecasts for up to 12 h.


2020 ◽  
Author(s):  
Youmin Tang ◽  
Yaling Wu

<p>In this study, we developed a flow-dependent ensemble-based targeted observation method, by minimizing the analysis error variance under the framework of Ensemble Kalman filter (EnKF) data assimilation system. This method estimates the background error statistics as a flow dependent function. The covariance localization is also introduced for computing efficiency and alleviating the spurious observations.  As a test bed, an  optimal observation array of sea level anomalies (SLA) is designed for its seasonal prediction over the tropical Indian Ocean (TIO) region.  Furthermore, the observing system simulation experiments (OSSEs) is used to verify the resultant optimal observational array using our recently developed coupled data assimilation system. A comparison between this flow-dependent method and the traditional method is also given. ​</p>


2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


Author(s):  
Magnus Lindskog ◽  
Adam Dybbroe ◽  
Roger Randriamampianina

AbstractMetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed.


Sign in / Sign up

Export Citation Format

Share Document