land data assimilation system
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 72)

H-INDEX

34
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Amy McNally ◽  
Jossy Jacob ◽  
Kristi Arsenault ◽  
Kimberly Slinski ◽  
Daniel Sarmiento ◽  
...  

Abstract. From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where droughts, floods, conflict, and economic market accessibility pose challenges for agricultural livelihoods and food security. The ability to remotely monitor environmental conditions is critical to support decision making for humanitarian assistance. The FEWS NET Land Data Assimilation System (FLDAS) global and Central Asia data streams described here combine meteorological reanalysis datasets and land surface models to generate routine estimates of snow-covered fraction, snow water equivalent, soil moisture, runoff and other variables representing the water and energy balance. This approach allows us to fill the gap created by the lack of in situ hydrologic data in the region. First, we describe the configuration of the FLDAS and the two resultant data streams: one, global, at ~1 month latency, provides monthly average outputs on a 10 km2 grid from 1982–present. The second data stream, Central Asia, at ~1 day latency, provides daily average outputs on a 1 km2 grid from 2001–present. We describe our verification of these data that are compared to other remotely sensed estimates as well as qualitative field reports. These data and value-added products (e.g., anomalies and interactive time series) are hosted by NASA and USGS data portals for public use. The global data stream with a longer record, is useful for exploring interannual variability, relationships with atmospheric-oceanic teleconnections (e.g., ENSO), trends over time, and monitoring drought. Meanwhile, the higher spatial resolution Central Asia data stream, with lower latency, is useful for simulating snow-hydrologic dynamics in complex topography for monitoring snowpack and flood risk.


2021 ◽  
Vol 13 (12) ◽  
pp. 5879-5898
Author(s):  
Jiao Lu ◽  
Guojie Wang ◽  
Tiexi Chen ◽  
Shijie Li ◽  
Daniel Fiifi Tawia Hagan ◽  
...  

Abstract. Land evaporation (ET) plays a crucial role in the hydrological and energy cycle. However, the widely used model-based products, even though helpful, are still subject to great uncertainties due to imperfect model parameterizations and forcing data. The lack of available observed data has further complicated estimation. Hence, there is an urgency to define the global proxy land ET with lower uncertainties for climate-induced hydrology and energy change. This study has combined three existing model-based products – the fifth-generation ECMWF reanalysis (ERA5), Global Land Data Assimilation System Version 2 (GLDAS2), and the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) – to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25∘. Here, we use the reliability ensemble averaging (REA) method, which minimizes errors using reference data, to combine the three products over regions with high consistencies between the products using the coefficient of variation (CV). The Global Land Evaporation Amsterdam Model Version 3.2a (GLEAM3.2a) and flux tower observation data were selected as the data for reference and evaluation, respectively. The results showed that the merged product performed well over a range of vegetation cover scenarios. The merged product also captured the trend of land evaporation over different areas well, showing the significant decreasing trend in the Amazon Plain in South America and Congo Basin in central Africa and the increasing trend in the east of North America, west of Europe, south of Asia and north of Oceania. In addition to demonstrating a good performance, the REA method also successfully converged the models based on the reliability of the inputs. The resulting REA data can be accessed at https://doi.org/10.5281/zenodo.4595941 (Lu et al., 2021).


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1292
Author(s):  
Xiaolong Huang ◽  
Shuai Han ◽  
Chunxiang Shi

Temperature is one of the most important meteorological variables for global climate change and human sustainable development. It plays an important role in agroclimatic regionalization and crop production. To date, temperature data have come from a wide range of sources. A detailed understanding of the reliability and applicability of these data will help us to better carry out research in crop modelling, agricultural ecology and irrigation. In this study, temperature reanalysis products produced by the China Meteorological Administration Land Data Assimilation System (CLDAS), the U.S. Global Land Data Assimilation System (GLDAS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version5 (ERA5)-Land are verified against hourly observations collected from 2265 national automatic weather stations (NAWS) in China for the period 2017–2019. The above three reanalysis systems are advanced and widely used multi-source data fusion and re-analysis systems at present. The station observations have gone through data Quality Control (QC) and are taken as “true values” in the present study. The three reanalysis temperature datasets were spatial interpolated using the bi-linear interpolation method to station locations at each time. By calculating the statistical metrics, the accuracy of the gridded datasets can be evaluated. The conclusions are as follows. (1) Based on the evaluation of temporal variability and spatial distribution as well as correlation and bias analysis, all the three reanalysis products are reasonable in China. (2) Statistically, the CLDAS product has the highest accuracy with the root mean square error (RMSE) of 0.83 °C. The RMSEs of the other two reanalysis datasets produced by ERA5-Land and GLDAS are 2.72 °C and 2.91 °C, respectively. This result indicates that the CLDAS performs better than ERA5-Land and GLDAS, while ERA5-Land performs better than GLDAS. (3) The accuracy of the data decreases with increasing elevation, which is common for all of the three products. This implies that more caution is needed when using the three reanalysis temperature data in mountainous regions with complex terrain. The major conclusion of this study is that the CLDAS product demonstrates a relatively high reliability, which is of great significance for the study of climate change and forcing crop models.


2021 ◽  
Vol 13 (22) ◽  
pp. 4495
Author(s):  
Meiling Gao ◽  
Zhenhong Li ◽  
Zhenyu Tan ◽  
Qi Liu ◽  
Huanfeng Shen

With the rapid process of urbanization, the urban heat island (UHI), the phenomenon where urban regions become hotter than their surroundings, is increasingly aggravated. The UHI is affected by multiple factors overall. However, it is difficult to dissociate the effect of one aspect by widely used approaches such as the remote-sensing-based method. To qualify the response of surface UHI to the land use and land cover (LULC) changes, this study took the numerical land model named u-HRLDAS (urbanized high-resolution land data assimilation system) as the modeling tool to investigate the effect of LULC changes on the UHI from 1980 to 2013 in Wuhan city, China. Firstly, the simulation accuracy of the model was improved, and the summer urban heat environment was simulated for the summer of 2013. Secondly, taking the simulation in 2013 as the control case (CNTL), the LULC in 1980, 1990, and 2000 were replaced by the LULC while the other conditions kept the same as the CNTL to explore the effect of LULC on UHI. The results indicate that the proper configuration of the modeling setup and accurate surface input data are considered important for the simulated results of the u-HRLDAS. The response intensity of UHI to LULC changes after 2000 was stronger than that of before 2000. From the spatial perspective, the part that had the strongest response intensity of land surface temperature to LULC changes was the region between the third ring road and the inner ring road of Wuhan. This study can provide a reference for cognizing the urban heat environment and guide policy making for urban development.


2021 ◽  
Vol 13 (20) ◽  
pp. 4081
Author(s):  
Peter Weston ◽  
Patricia de Rosnay

Brightness temperature (Tb) observations from the European Space Agency (ESA) Soil Moisture Ocean Salinity (SMOS) instrument are passively monitored in the European Centre for Medium-range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). Several quality control procedures are performed to screen out poor quality data and/or data that cannot accurately be simulated from the numerical weather prediction (NWP) model output. In this paper, these quality control procedures are reviewed, and enhancements are proposed, tested, and evaluated. The enhancements presented include improved sea ice screening, coastal and ambiguous land-ocean screening, improved radio frequency interference (RFI) screening, and increased usage of observation at the edge of the satellite swath. Each of the screening changes results in improved agreement between the observations and model equivalent values. This is an important step in advance of future experiments to test the direct assimilation of SMOS Tbs into the ECMWF land data assimilation system.


2021 ◽  
Vol 25 (9) ◽  
pp. 4917-4945
Author(s):  
Nicolas Gasset ◽  
Vincent Fortin ◽  
Milena Dimitrijevic ◽  
Marco Carrera ◽  
Bernard Bilodeau ◽  
...  

Abstract. Environment and Climate Change Canada has initiated the production of a 1980–2018, 10 km, North American precipitation and surface reanalysis. ERA-Interim is used to initialize the Global Deterministic Reforecast System (GDRS) at a 39 km resolution. Its output is then dynamically downscaled to 10 km by the Regional Deterministic Reforecast System (RDRS). Coupled with the RDRS, the Canadian Land Data Assimilation System (CaLDAS) and Precipitation Analysis (CaPA) are used to produce surface and precipitation analyses. All systems used are close to operational model versions and configurations. In this study, a 7-year sample of the reanalysis (2011–2017) is evaluated. Verification results show that the skill of the RDRS is stable over time and equivalent to that of the current operational system. The impact of the coupling between RDRS and CaLDAS is explored using an early version of the reanalysis system which was run at 15 km resolution for the period 2010–2014, with and without the use of CaLDAS. Significant improvements are observed with CaLDAS in the lower troposphere and surface layer, especially for the 850 hPa dew point and absolute temperatures in summer. Precipitation is further improved through an offline precipitation analysis which allows the assimilation of additional observations of 24 h precipitation totals. The final dataset should be of particular interest for hydrological applications focusing on transboundary and northern watersheds, where existing products often show discontinuities at the border and assimilate very few – if any – precipitation observations.


2021 ◽  
Vol 13 (8) ◽  
pp. 4241-4261
Author(s):  
Yan Chen ◽  
Shunlin Liang ◽  
Han Ma ◽  
Bing Li ◽  
Tao He ◽  
...  

Abstract. Surface air temperature (Ta), as an important climate variable, has been used in a wide range of fields such as ecology, hydrology, climatology, epidemiology, and environmental science. However, ground measurements are limited by poor spatial representation and inconsistency, and reanalysis and meteorological forcing datasets suffer from coarse spatial resolution and inaccuracy. Previous studies using satellite data have mainly estimated Ta under clear-sky conditions or with limited temporal and spatial coverage. In this study, an all-sky daily mean land Ta product at a 1 km spatial resolution over mainland China for 2003–2019 has been generated mainly from the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Global Land Data Assimilation System (GLDAS) dataset. Three Ta estimation models based on random forest were trained using ground measurements from 2384 stations for three different clear-sky and cloudy-sky conditions. The random sample validation results showed that the R2 and root-mean-square error (RMSE) values of the three models ranged from 0.984 to 0.986 and from 1.342 to 1.440 K, respectively. We examined the spatiotemporal patterns and land cover type dependences of model accuracy. Two cross-validation (CV) strategies of leave-time-out (LTO) CV and leave-location-out (LLO) CV were also used to evaluate the models. Finally, we developed the all-sky Ta dataset from 2003 to 2009 and compared it with the China Land Data Assimilation System (CLDAS) dataset at a 0.0625∘ spatial resolution, the China Meteorological Forcing Data (CMFD) dataset at a 0.1∘ spatial resolution, and the GLDAS dataset at a 0.25∘ spatial resolution. Validation accuracy of our product in 2010 was significantly better than other datasets, with R2 and RMSE values of 0.992 and 1.010 K, respectively. In summary, the developed all-sky daily mean land Ta dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in the studies of climate change and the hydrological cycle. This dataset is currently freely available at https://doi.org/10.5281/zenodo.4399453 (Chen et al., 2021b) and the University of Maryland (http://glass.umd.edu/Ta_China/, last access: 24 August 2021). A sub-dataset that covers Beijing generated from this dataset is also publicly available at https://doi.org/10.5281/zenodo.4405123 (Chen et al., 2021a).


2021 ◽  
Vol 13 (17) ◽  
pp. 3423
Author(s):  
Shang Gao ◽  
Zhi Li ◽  
Mengye Chen ◽  
Daniel Allen ◽  
Thomas Neeson ◽  
...  

Water scarcity during severe droughts has profound hydrological and ecological impacts on rivers. However, the drying dynamics of river surface extent during droughts remains largely understudied. Satellite remote sensing enables surveys and analyses of rivers at fine spatial resolution by providing an alternative to in-situ observations. This study investigates the seasonal drying dynamics of river extent in California where severe droughts have been occurring more frequently in recent decades. Our methods combine the use of Landsat-based Global Surface Water (GSW) and global river bankful width databases. As an indirect comparison, we examine the monthly fractional river extent (FrcSA) in 2071 river reaches and its correlation with streamflow at co-located USGS gauges. We place the extreme 2012–2015 drought into a broader context of multi-decadal river extent history and illustrate the extraordinary change between during- and post-drought periods. In addition to river extent dynamics, we perform statistical analyses to relate FrcSA with the hydroclimatic variables obtained from the National Land Data Assimilation System (NLDAS) model simulation. Results show that Landsat provides consistent observation over 90% of area in rivers from March to October and is suitable for monitoring seasonal river drying in California. FrcSA reaches fair (>0.5) correlation with streamflow except for dry and mountainous areas. During the 2012–2015 drought, 332 river reaches experienced their lowest annual mean FrcSA in the 34 years of Landsat history. At a monthly scale, FrcSA is better correlated with soil water in more humid areas. At a yearly scale, summer mean FrcSA is increasingly sensitive to winter precipitation in a drier climate; and the elasticity is also reduced with deeper ground water table. Overall, our study demonstrates the detectability of Landsat on the river surface extent in an arid region with complex terrain. River extent in catchments of deficient water storage is likely subject to higher percent drop in a future climate with longer, more frequent droughts.


Sign in / Sign up

Export Citation Format

Share Document