Non-born-oppenheimer density functional theory for excited states by using green's function techniques

2001 ◽  
Vol 84 (3) ◽  
pp. 354-362 ◽  
Author(s):  
T. Yoshimoto ◽  
Y. Ohta ◽  
J. Maki ◽  
Y. Shigeta ◽  
H. Nagao ◽  
...  
Author(s):  
C. Faber ◽  
P. Boulanger ◽  
C. Attaccalite ◽  
I. Duchemin ◽  
X. Blase

Many-body Green's function perturbation theories, such as the GW and Bethe–Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn–Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe–Salpeter equation formalisms, are outlined.


Author(s):  
Lin Huang ◽  
Yu-Jia Zeng ◽  
Dan Wu ◽  
Nan-Nan Luo ◽  
Ye-Xin Feng ◽  
...  

Achieving high tunneling magnetoresistance (TMR) in molecular-scale junctions is attractive for their applications in spintronics. By using density-functional theory (DFT) in combination with the nonequilibrium Green's function (NEGF) method, we...


RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10675-10679 ◽  
Author(s):  
Jie Ma ◽  
Chuan-Lu Yang ◽  
Mei-Shan Wang ◽  
Xiao-Guang Ma

The effect of the modified sulfur bridge on the I–V characteristics of a two-probe system of tetrapyrimidinyl molecules and Au electrodes is explored based on density functional theory with nonequilibrium Green's function.


2016 ◽  
Vol 18 (6) ◽  
pp. 4333-4344
Author(s):  
Cuicui Sun ◽  
Guiling Zhang ◽  
Yan Shang ◽  
Zhao-Di Yang ◽  
Xiaojun Sun

Electronic structures and transport properties of prototype MoS2 nanotube (15, 0) nanocables, including undoped PSi@MoS2 and B- and P-doped PSi@MoS2 (where PSi refers to polysilane), are investigated using the density functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods.


Sign in / Sign up

Export Citation Format

Share Document