Computational electrochemistry of doped graphene as electrocatalytic material in fuel cells

2016 ◽  
Vol 116 (22) ◽  
pp. 1623-1640 ◽  
Author(s):  
Gianluca Fazio ◽  
Lara Ferrighi ◽  
Daniele Perilli ◽  
Cristiana Di Valentin
2021 ◽  
Vol 22 (4) ◽  
pp. 1740 ◽  
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Silvo Hribernik ◽  
Mojca Božič ◽  
Jurij Svete ◽  
...  

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


2021 ◽  
Vol 512 ◽  
pp. 230482
Author(s):  
Jie Xia ◽  
Yanxian Geng ◽  
Shuting Huang ◽  
Dongyun Chen ◽  
Najun Li ◽  
...  

2012 ◽  
Vol 22 (2) ◽  
pp. 390-395 ◽  
Author(s):  
Zhen-Huan Sheng ◽  
Hong-Li Gao ◽  
Wen-Jing Bao ◽  
Feng-Bin Wang ◽  
Xing-Hua Xia

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 597
Author(s):  
Martin González-Hernández ◽  
Ermete Antolini ◽  
Joelma Perez

Pt electrocatalysts supported on pristine graphene nanosheets (GNS) and nitrogen-doped graphene nanoplatelets (N-GNP) were prepared through the ethylene glycol process, and a comparison of their CO tolerance and stability as anode materials in polymer electrolyte membrane fuel cells (PEMFCs) with those of the conventional carbon (C)-supported Pt was made. Repetitive potential cycling in a half cell showed that Pt/GNS catalysts have the highest stability, in terms of the highest sintering resistance (lowest particle growth) and the lowest electrochemically active surface area loss. By tests in PEMFCs, the Pt/N-GNP catalyst showed the highest CO tolerance, while the poisoning resistance of Pt/GNS was lower than that of Pt/C. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the presence of a defect in graphene, generated by N-doping, decreasing CO adsorption energy.


Sign in / Sign up

Export Citation Format

Share Document