Rank of a matrix of block graphs

Author(s):  
Yu Chen ◽  
Yunhua Liao
2008 ◽  
Vol 15 (03) ◽  
pp. 379-390 ◽  
Author(s):  
Xuesong Ma ◽  
Ruji Wang

Let X be a simple undirected connected trivalent graph. Then X is said to be a trivalent non-symmetric graph of type (II) if its automorphism group A = Aut (X) acts transitively on the vertices and the vertex-stabilizer Av of any vertex v has two orbits on the neighborhood of v. In this paper, such graphs of order at most 150 with the basic cycles of prime length are investigated, and a classification is given for such graphs which are non-Cayley graphs, whose block graphs induced by the basic cycles are non-bipartite graphs.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Enrique Miguel Barquinero ◽  
Lorenzo Ruffoni ◽  
Kaidi Ye

Abstract We study Artin kernels, i.e. kernels of discrete characters of right-angled Artin groups, and we show that they decompose as graphs of groups in a way that can be explicitly computed from the underlying graph. When the underlying graph is chordal, we show that every such subgroup either surjects to an infinitely generated free group or is a generalized Baumslag–Solitar group of variable rank. In particular, for block graphs (e.g. trees), we obtain an explicit rank formula and discuss some features of the space of fibrations of the associated right-angled Artin group.


2017 ◽  
Vol 35 (2) ◽  
pp. 613-631 ◽  
Author(s):  
D. Pradhan ◽  
Anupriya Jha
Keyword(s):  

2011 ◽  
Vol 88 (3) ◽  
pp. 468-475 ◽  
Author(s):  
Flavia Bonomo ◽  
Márcia R. Cerioli
Keyword(s):  

2018 ◽  
Vol 33 (3) ◽  
pp. e3102
Author(s):  
Elaheh Talebanpour Bayat ◽  
Bahram Hemmateenejad ◽  
Morteza Akhond ◽  
Mohammad Mahdi Bordbar ◽  
Knut Baumann

2022 ◽  
Vol 23 (1) ◽  
pp. 1-35
Author(s):  
Anuj Dawar ◽  
Gregory Wilsenach

Fixed-point logic with rank (FPR) is an extension of fixed-point logic with counting (FPC) with operators for computing the rank of a matrix over a finit field. The expressive power of FPR properly extends that of FPC and is contained in P, but it is not known if that containment is proper. We give a circuit characterization for FPR in terms of families of symmetric circuits with rank gates, along the lines of that for FPC given by Anderson and Dawar in 2017. This requires the development of a broad framework of circuits in which the individual gates compute functions that are not symmetric (i.e., invariant under all permutations of their inputs). This framework also necessitates the development of novel techniques to prove the equivalence of circuits and logic. Both the framework and the techniques are of greater generality than the main result.


2019 ◽  
Vol 35 ◽  
pp. 285-296
Author(s):  
Elena Rubei

An interval matrix is a matrix whose entries are intervals in $\R$. This concept, which has been broadly studied, is generalized to other fields. Precisely, a rational interval matrix is defined to be a matrix whose entries are intervals in $\Q$. It is proved that a (real) interval $p \times q$ matrix with the endpoints of all its entries in $\Q$ contains a rank-one matrix if and only if it contains a rational rank-one matrix, and contains a matrix with rank smaller than $\min\{p,q\}$ if and only if it contains a rational matrix with rank smaller than $\min\{p,q\}$; from these results and from the analogous criterions for (real) inerval matrices, a criterion to see when a rational interval matrix contains a rank-one matrix and a criterion to see when it is full-rank, that is, all the matrices it contains are full-rank, are deduced immediately. Moreover, given a field $K$ and a matrix $\al$ whose entries are subsets of $K$, a criterion to find the maximal rank of a matrix contained in $\al$ is described.


2000 ◽  
Vol 99 (1-3) ◽  
pp. 349-366 ◽  
Author(s):  
Andreas Brandstädt ◽  
Van Bang Le
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document