On computing a minimum secure dominating set in block graphs

2017 ◽  
Vol 35 (2) ◽  
pp. 613-631 ◽  
Author(s):  
D. Pradhan ◽  
Anupriya Jha
Keyword(s):  
2013 ◽  
Vol 05 (04) ◽  
pp. 1350024 ◽  
Author(s):  
B. S. PANDA ◽  
S. PAUL

A subset L ⊆ V of a graph G = (V, E) is called a connected liar's dominating set of G if (i) for all v ∈ V, |NG[v] ∩ L| ≥ 2, (ii) for every pair u, v ∈ V of distinct vertices, |(NG[u]∪NG[v])∩L| ≥ 3, and (iii) the induced subgraph of G on L is connected. In this paper, we initiate the algorithmic study of minimum connected liar's domination problem by showing that the corresponding decision version of the problem is NP-complete for general graph. Next we study this problem in subclasses of chordal graphs where we strengthen the NP-completeness of this problem for undirected path graph and prove that this problem is linearly solvable for block graphs. Finally, we propose an approximation algorithm for minimum connected liar's domination problem and investigate its hardness of approximation in general graphs.


1993 ◽  
Vol 03 (03) ◽  
pp. 233-241
Author(s):  
A. RAMAN ◽  
C. PANDU RANGAN

A set of vertices D is a dominating set of a graph G=(V, E) if every vertex in V−D is adjacent to at least one vertex in D. The domatic partition of G is the partition of the vertex set V into a maximum number of dominating sets. In this paper, we present efficient parallel algorithms for finding the domatic partition of Interval graphs, Block graphs and K-trees.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


2019 ◽  
Vol 11 (06) ◽  
pp. 1950063
Author(s):  
Saikat Pal ◽  
D. Pradhan

In a graph [Formula: see text], the degree of a vertex [Formula: see text], denoted by [Formula: see text], is defined as the number of edges incident on [Formula: see text]. A set [Formula: see text] of vertices of [Formula: see text] is called a strong dominating set if for every [Formula: see text], there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text]. For a given graph [Formula: see text], Min-Strong-DS is the problem of finding a strong dominating set of minimum cardinality. The decision version of Min-Strong-DS is shown to be NP -complete for chordal graphs. In this paper, we present polynomial time algorithms for computing a strong dominating set in block graphs and proper interval graphs, two subclasses of chordal graphs. On the other hand, we show that for a graph [Formula: see text] with [Formula: see text]-vertices, Min-Strong-DS cannot be approximated within a factor of [Formula: see text] for every [Formula: see text], unless NP [Formula: see text] DTIME ([Formula: see text]). We also show that Min-Strong-DS is APX -complete for graphs with maximum degree [Formula: see text]. On the positive side, we show that Min-Strong-DS can be approximated within a factor of [Formula: see text] for graphs with maximum degree [Formula: see text].


2019 ◽  
Vol 8 (3) ◽  
pp. 4455-4459

Let (G) denote the chromatic number of a graph G = (V,E). A dominating set D  V(G) is a set such that for every vertex v V(G) \ D there is at least one neighbor in D. The domination number (G) is the least cardinality of a dominating set of G. A chromatic transversal dominating set(CTDS) of a graph G is a dominating set D which intersects every color class of each -partition of G. The chromatic transversal domination number ct(G) is the least cardinality of a CTDS of G. In this paper, we characterize cubic graphs, block graphs and cactus graphs with equal domination number and chromatic transversal domination number .


2019 ◽  
Vol 11 (02) ◽  
pp. 1950020
Author(s):  
M. Alambardar Meybodi ◽  
M. R. Hooshmandasl ◽  
P. Sharifani ◽  
A. Shakiba

A set [Formula: see text] for the graph [Formula: see text] is called a dominating set if any vertex [Formula: see text] has at least one neighbor in [Formula: see text]. Fomin et al. [Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications, ACM Transactions on Algorithms (TALG) 5(1) (2008) 9] gave an algorithm for enumerating all minimal dominating sets with [Formula: see text] vertices in [Formula: see text] time. It is known that the number of minimal dominating sets for interval graphs and trees on [Formula: see text] vertices is at most [Formula: see text]. In this paper, we introduce the domination cover number as a new criterion for evaluating the dominating sets in graphs. The domination cover number of a dominating set [Formula: see text], denoted by [Formula: see text], is the summation of the degrees of the vertices in [Formula: see text]. Maximizing or minimizing this parameter among all minimal dominating sets has interesting applications in many real-world problems, such as the art gallery problem. Moreover, we investigate this concept for different graph classes and propose some algorithms for finding the domination cover number in trees and block graphs.


2014 ◽  
Vol 36 (9) ◽  
pp. 1868-1879
Author(s):  
Wei-Zhong LUO ◽  
Qi-Long FENG ◽  
Jian-Xin WANG ◽  
Jian-Er CHEN

2014 ◽  
Vol 36 (6) ◽  
pp. 1246-1253
Author(s):  
Feng LI ◽  
Hai-Xing ZHAO ◽  
Zong-Ben XU
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document