Effects of different water storage procedures on the dissolved Fe concentration and isotopic composition of chemically contrasted waters from the Amazon River Basin

2015 ◽  
Vol 29 (21) ◽  
pp. 2102-2108 ◽  
Author(s):  
Daniel S. Mulholland ◽  
Franck Poitrasson ◽  
Geraldo R. Boaventura
2019 ◽  
Vol 23 (7) ◽  
pp. 2841-2862 ◽  
Author(s):  
Suyog Chaudhari ◽  
Yadu Pokhrel ◽  
Emilio Moran ◽  
Gonzalo Miguez-Macho

Abstract. We investigate the interannual and interdecadal hydrological changes in the Amazon River basin and its sub-basins during the 1980–2015 period using GRACE satellite data and a physically based, 2 km grid continental-scale hydrological model (LEAF-Hydro-Flood) that includes a prognostic groundwater scheme and accounts for the effects of land use–land cover (LULC) change. The analyses focus on the dominant mechanisms that modulate terrestrial water storage (TWS) variations and droughts. We find that (1) the model simulates the basin-averaged TWS variations remarkably well; however, disagreements are observed in spatial patterns of temporal trends, especially for the post-2008 period. (2) The 2010s is the driest period since 1980, characterized by a major shift in the decadal mean compared to the 2000s caused by increased drought frequency. (3) Long-term trends in TWS suggest that the Amazon overall is getting wetter (1.13 mm yr−1), but its southern and southeastern sub-basins are undergoing significant negative TWS changes, caused primarily by intensified LULC changes. (4) Increasing divergence between dry-season total water deficit and TWS release suggests a strengthening dry season, especially in the southern and southeastern sub-basins. (5) The sub-surface storage regulates the propagation of meteorological droughts into hydrological droughts by strongly modulating TWS release with respect to its storage preceding the drought condition. Our simulations provide crucial insight into the importance of sub-surface storage in alleviating surface water deficit across Amazon and open pathways for improving prediction and mitigation of extreme droughts under changing climate and increasing hydrologic alterations due to human activities (e.g., LULC change).


2019 ◽  
Author(s):  
Suyog Chaudhari ◽  
Yadu Pokhrel ◽  
Emilio Moran ◽  
Gonzalo Miguez-Macho

Abstract. We investigate the interannual and interdecadal hydrological changes in the Amazon river basin and its sub-basins during 1980–2015 period, using GRACE satellite data and a physically-based, 2-km grid continental scale hydrological model (Leaf-Hydro-Flood) that incorporates a prognostic groundwater scheme and the effects of land use land cover change (LULC). The analyses focus on the dominant mechanisms that modulate terrestrial water storage (TWS) variations and droughts. Our results indicate that (1) the model simulates the basin-averaged TWS variations remarkably well, however, disagreements are observed in spatial patterns of temporal trends for post-2008 period, (2) the 2010s is the driest period since 1980, characterized by a major shift in decadal mean compared to 2000s due to the increased frequency of droughts, (3) long-term trends in TWS suggests that the Amazon as a whole is getting wetter (1.13 mm/y), but its southern and south-eastern sub-basins are facing significant negative TWS trends, caused primarily by intensified LULC changes, (4) increasing divergence between dry season total water deficit (TWD) and TWS release (TWS-R) suggest a strengthening dry season, especially in the southern and south-eastern sub-basins, and (5) the sub-surface storage regulates the propagation of meteorological droughts into hydrological droughts by strongly modulating TWS release with respect to its storage preceding the drought condition. Our simulations provide crucial insight on the importance of sub-surface storage in alleviating surface water deficit across Amazon and open pathways for improving prediction and mitigation of extreme droughts under changing climate and increasing hydrologic alterations due to human activities (e.g., LULC change).


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3128
Author(s):  
Lilu Cui ◽  
Zhe Song ◽  
Zhicai Luo ◽  
Bo Zhong ◽  
Xiaolong Wang ◽  
...  

The mass changes in the Earth’s surface internally derived from the Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On (GRACE-FO) missions have played an important role in the research of various geophysical phenomena. However, the one-year data gap between these two missions has broken the continuity of this geophysical research. In order to assess the feasibility of using the Swarm time-variable gravity field (TVGF) to bridge the data gap, we compared Swarm with the GRACE/GRACE-FO models in terms of model accuracy, observation noise and inverted terrestrial water storage change (TWSC). The results of the comparison showed that the difference between the degree-error root mean square (RMS) of the two models is small, within degree 10. The correlation between the spherical harmonic coefficients of the two models is also relatively high, below degree 17. The observation noise values of GRACE/GRACE-FO are smaller than those of Swarm. Therefore, the latter model requires a larger filter radius to lower these noise levels. According to the correlation coefficients and the time series map of TWSC in the Amazon River basin, the results of GRACE and Swarm are similar. In addition, the TWSC signals were further analyzed. The long-term trend changes of TWSC derived from GRACE/GRACE-FO and the International Combination Service for Time-variable Gravity Fields (COST-G)-Swarm over the period from December 2013 to May 2020 were −0.72 and −1.05 cm/year, respectively. The annual amplitudes of two models are 15.65 and 15.39 cm, respectively. The corresponding annual phases are −1.36 and −1.33 rad, respectively. Our results verified that the Swarm TVGF has the potential to extract TWSC signals in the Amazon River basin and can serve as a complement to GRACE/GRACE-FO data for detecting TWSC in local areas.


2018 ◽  
Vol 54 (5) ◽  
pp. 3290-3312 ◽  
Author(s):  
M. J. Tourian ◽  
J. T. Reager ◽  
N. Sneeuw

Gigabyte ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Alexandre Wagner Silva Hilsdorf ◽  
Marcela Uliano-Silva ◽  
Luiz Lehmann Coutinho ◽  
Horácio Montenegro ◽  
Vera Maria Fonseca Almeida-Val ◽  
...  

2021 ◽  
Author(s):  
Suyog Chaudhari ◽  
Erik Brown ◽  
Raul Quispe-Abad ◽  
Emilio Moran ◽  
Norbert Mueller ◽  
...  

<p>Given the ongoing and planned hydropower development projects in the Amazon River basin, appalling losses in biodiversity, river ecology and river connectivity are inevitable. These hydropower projects are proposed to be built in exceptionally endemic sites, setting records in environmental losses by impeding fish movement, altering flood pulse, causing large-scale deforestation, and increasing greenhouse gas emissions. With the burgeoning energy demand combined with the aforementioned negative impacts of conventional hydropower technology, there is an imminent need to re-think the design of hydropower to avoid the potentially catastrophic consequences of large dams. It is certain that the Amazon will undergo some major hydrological changes in the near future because of the compounded effects of climate change and proposed dams, if built with the conventional hydropower technology. In this study, we present a transformative hydropower outlook that integrates low-head hydropower technology (e.g., in-stream turbines) and multiple environmental aspects, such as river ecology and protected areas. We employ a high resolution (~2km) continental scale hydrological model called LEAF-Hydro-Flood (LHF) to assess the in-stream hydropower potential in the Amazon River basin. We particularly focus on quantifying the potential and feasibility of employing instream turbines in the Amazon instead of building large dams. We show that a significant portion of the total energy planned to be generated from conventional hydropower in the Brazilian Amazon could be harnessed using in-stream turbines that utilize kinetic energy of water without requiring storage. Further, we also find that implementing in-stream turbines as an alternative to large storage-based dams could prove economically feasible, since most of the environmental and social costs associated with dams are eliminated. Our results open multiple pathways to achieve sustainable hydropower development in the Amazon to meet the ever-increasing energy demands while minimizing hydrological, social, and ecological impacts. It also provides important insight for sustainable hydropower development in other global regions. The results presented are based on a manuscript under revision for Nature Sustainability.</p>


Sign in / Sign up

Export Citation Format

Share Document