Finite-time asynchronous ℋ∞ filtering for discrete-time Markov jump systems over a lossy network

2016 ◽  
Vol 26 (17) ◽  
pp. 3831-3848 ◽  
Author(s):  
Hao Shen ◽  
Feng Li ◽  
Zheng-Guang Wu ◽  
Ju H. Park
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Junjie Zhao ◽  
Jing Wang ◽  
Bo Li

We deal with the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-state Markovian process is given to govern the transition of the jumping parameters. A controller designed for unconstrained systems combined with a dynamic antiwindup compensator is given to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable. The proposed conditions allow us to find dynamic anti-windup compensator which stabilize the closed-loop systems in the finite-time sense. All these conditions can be expressed in the form of linear matrix inequalities and therefore are numerically tractable, as shown in the example included in the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Bo Li ◽  
Junjie Zhao

This paper investigates the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-state Markovian process is given to govern the transition of the jumping parameters. The finite-timeH∞controller via state feedback is designed to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable. Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic control performance of discrete-time Markov jump systems are derived in the form of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document